To jest stara wersja strony!
To nie jest zwykłe wahadło — to wahadło podwójne (ang. _double pendulum_), jeden z najprostszych układów fizycznych pokazujących zjawisko deterministycznego chaosu. Dwa ramiona, dwie masy, grawitacja — a efekt to piękny, nieprzewidywalny taniec, w którym drobna zmiana kąta startowego potrafi całkowicie zmienić przyszły ruch.
Zobacz więcej:
[https://pl.wikipedia.org/wiki/Chaos_deterministyczny Chaos deterministyczny]
[https://en.wikipedia.org/wiki/Double_pendulum Double Pendulum (Wikipedia)]
Układ składa się z dwóch punktowych mas zawieszonych na nierozciągliwych prętach. Ruch opisuje się czterema zmiennymi:
Równania ruchu pochodzą z zasad dynamiki Newtona albo bezpośrednio z mechaniki Lagrange’a:
\begin{align*} \delta &= \theta_2 - \theta_1 \\ \ddot{\theta}_1 &= \frac{m_2 l_1 \omega_1^2 \sin\delta \cos\delta + m_2 g \sin\theta_2 \cos\delta + m_2 l_2 \omega_2^2 \sin\delta - (m_1 + m_2) g \sin\theta_1}{(m_1 + m_2) l_1 - m_2 l_1 \cos^2\delta} \\ \ddot{\theta}_2 &= \frac{-(m_1 + m_2) l_1 \omega_1^2 \sin\delta + (m_1 + m_2) g \sin\theta_1 \cos\delta - m_2 l_2 \omega_2^2 \sin\delta \cos\delta - (m_1 + m_2) g \sin\theta_2}{\left( \frac{l_2}{l_1} \right)((m_1 + m_2) l_1 - m_2 l_1 \cos^2\delta)} \end{align*}
Wygląda dziko? Tak właśnie wygląda fizyka nieliniowa :)
Ruch symulowany jest numerycznie (metodą Rungego-Kutty) i animowany z pomocą biblioteki matplotlib w Pythonie. Kod pozwala interaktywnie zmieniać:
- masy obu odważników,
- długości ramion,
- kąty początkowe.
Każde kliknięcie to nowy dziwny świat trajektorii.
Zanim komputer może cokolwiek zasymulować, potrzebujemy dwóch rzeczy: modelu fizycznego (czyli równań) i metody ich rozwiązania (bo ręcznie nikt nie będzie liczył setek tysięcy kroków). Dla naszego podwójnego wahadła: - model daje nam mechanika Lagrange’a, - rozwiązanie zapewnia metoda Rungego-Kutty 4. rzędu (RK4).
—
Zamiast klasycznych sił z II zasady Newtona, Lagrange korzysta z zasad energii. Definiujemy tzw. Lagrangian:
L = T - V
Gdzie: - \( T \) – energia kinetyczna układu, - \( V \) – energia potencjalna.
Dla układu o współrzędnych uogólnionych \( q_i \), równania ruchu wyprowadza się z tzw. równań Lagrange’a:
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0
W naszym przypadku współrzędnymi uogólnionymi są kąty: \( q_1 = \theta_1 \), \( q_2 = \theta_2 \). Energię całego układu da się zapisać jako:
- Energia kinetyczna (oba ramiona, uwzględniając ruch względny): T = \frac{1}{2} m_1 l_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 \left[ l_1^2 \dot{\theta}_1^2 + l_2^2 \dot{\theta}_2^2 + 2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2) \right]
- Energia potencjalna (grawitacja działa w dół): V = - (m_1 + m_2) g l_1 \cos\theta_1 - m_2 g l_2 \cos\theta_2
Wstawiając \( L = T - V \) do równań Lagrange’a, otrzymujemy dwie nieliniowe równania różniczkowe drugiego rzędu, które później przekształcamy do układu czterech równań pierwszego rzędu (bo tak działa solver numeryczny).
—
RK4 to klasyczna metoda numeryczna do rozwiązywania układów równań różniczkowych pierwszego rzędu postaci:
\dot{y} = f(t, y), \quad y(t_0) = y_0
Jeśli chcemy znaleźć wartość \( y_{n+1} \) w punkcie \( t_{n+1} = t_n + h \), to robimy cztery obliczenia pośrednie:
\begin{align*} k_1 &= f(t_n, y_n) \\ k_2 &= f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right) \\ k_3 &= f\left(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2\right) \\ k_4 &= f(t_n + h, y_n + h k_3) \\ y_{n+1} &= y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{align*}
To coś jak „inteligentne uśrednienie” kilku przybliżeń kierunku w którym idziemy. RK4 jest kompromisem między dokładnością a szybkością — błąd lokalny to \( \mathcal{O}(h^5) \), a globalny \( \mathcal{O}(h^4) \).
W naszym kodzie zastosowaliśmy bibliotekę `solve_ivp()` z `scipy`, która pod spodem domyślnie używa RK45 — adaptacyjną wersję RK4 z kontrolą błędu i automatycznym dobieraniem kroku.
—
Pod spodem mamy: - nieliniowy układ dynamiczny (współrzędne pojawiają się wewnątrz trygonometrii), - chaotyczne zachowanie, czyli ogromną wrażliwość na warunki początkowe, - brak zamkniętego rozwiązania analitycznego — potrzebna jest symulacja numeryczna.
Dzięki mechanice Lagrange’a możemy spisać równania tak, by szanowały zasady zachowania energii i symetrii, a Runge-Kutta pozwala je dokładnie i stabilnie rozwiązać.
—
import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from matplotlib.widgets import Slider, Button from scipy.integrate import solve_ivp # Constants and default parameters g = 9.81 # Default parameters for masses, lengths and initial angles (in radians) default_params = { 'm1': 1.0, 'm2': 1.0, 'l1': 1.0, 'l2': 1.0, 'theta1': np.pi / 2, 'theta2': np.pi / 2, 'omega1': 0.0, 'omega2': 0.0, } def double_pendulum_derivs(t, y, m1, m2, l1, l2): """Returns the derivatives for the double pendulum system. y = [theta1, theta2, omega1, omega2] """ theta1, theta2, omega1, omega2 = y delta = theta2 - theta1 denom1 = (m1 + m2) * l1 - m2 * l1 * np.cos(delta)**2 domega1_dt = (m2 * l1 * omega1**2 * np.sin(delta) * np.cos(delta) + m2 * g * np.sin(theta2) * np.cos(delta) + m2 * l2 * omega2**2 * np.sin(delta) - (m1 + m2) * g * np.sin(theta1)) / denom1 denom2 = (l2 / l1) * denom1 domega2_dt = (- m2 * l2 * omega2**2 * np.sin(delta) * np.cos(delta) + (m1 + m2) * g * np.sin(theta1) * np.cos(delta) - (m1 + m2) * l1 * omega1**2 * np.sin(delta) - (m1 + m2) * g * np.sin(theta2)) / denom2 return [omega1, omega2, domega1_dt, domega2_dt] def simulate(params, t_max=20, dt=0.02): """Simulate the double pendulum motion with given parameters.""" t_span = (0, t_max) t_eval = np.arange(0, t_max, dt) y0 = [params['theta1'], params['theta2'], params['omega1'], params['omega2']] sol = solve_ivp(double_pendulum_derivs, t_span, y0, args=(params['m1'], params['m2'], params['l1'], params['l2']), t_eval=t_eval, method='RK45') return sol.t, sol.y # Initial simulation data t, y = simulate(default_params) theta1_vals = y[0] theta2_vals = y[1] def get_positions(theta1, theta2, l1, l2): """Calculate positions of pendulum bobs.""" x1 = l1 * np.sin(theta1) y1 = -l1 * np.cos(theta1) x2 = x1 + l2 * np.sin(theta2) y2 = y1 - l2 * np.cos(theta2) return x1, y1, x2, y2 # Create the figure and the animation axes fig, ax = plt.subplots(figsize=(8, 8)) plt.subplots_adjust(left=0.1, bottom=0.35) ax.set_xlim(-3, 3) ax.set_ylim(-3, 3) ax.set_aspect('equal') ax.set_title('Double Pendulum Simulation') # Initialize line and bob markers line, = ax.plot([], [], 'o-', lw=2) trace, = ax.plot([], [], '-', lw=1, color='gray') # Optional trace of second bob trace_x, trace_y = [], [] def init(): line.set_data([], []) trace.set_data([], []) return line, trace # Animation update function def update(frame): theta1 = theta1_vals[frame] theta2 = theta2_vals[frame] x1, y1, x2, y2 = get_positions(theta1, theta2, current_params['l1'], current_params['l2']) line.set_data([0, x1, x2], [0, y1, y2]) trace_x.append(x2) trace_y.append(y2) trace.set_data(trace_x, trace_y) return line, trace # Create sliders for initial parameters axcolor = 'lightgoldenrodyellow' ax_m1 = plt.axes([0.1, 0.25, 0.3, 0.03], facecolor=axcolor) ax_m2 = plt.axes([0.1, 0.20, 0.3, 0.03], facecolor=axcolor) ax_l1 = plt.axes([0.1, 0.15, 0.3, 0.03], facecolor=axcolor) ax_l2 = plt.axes([0.1, 0.10, 0.3, 0.03], facecolor=axcolor) ax_theta1 = plt.axes([0.6, 0.25, 0.3, 0.03], facecolor=axcolor) ax_theta2 = plt.axes([0.6, 0.20, 0.3, 0.03], facecolor=axcolor) slider_m1 = Slider(ax_m1, 'Mass 1', 0.1, 5.0, valinit=default_params['m1']) slider_m2 = Slider(ax_m2, 'Mass 2', 0.1, 5.0, valinit=default_params['m2']) slider_l1 = Slider(ax_l1, 'Length 1', 0.5, 3.0, valinit=default_params['l1']) slider_l2 = Slider(ax_l2, 'Length 2', 0.5, 3.0, valinit=default_params['l2']) slider_theta1 = Slider(ax_theta1, 'Theta 1', 0, 2*np.pi, valinit=default_params['theta1']) slider_theta2 = Slider(ax_theta2, 'Theta 2', 0, 2*np.pi, valinit=default_params['theta2']) # Dictionary to hold current simulation parameters current_params = default_params.copy() def update_simulation(val): """Update simulation based on slider values.""" global t, y, theta1_vals, theta2_vals, trace_x, trace_y, current_params # Update current parameters from sliders current_params['m1'] = slider_m1.val current_params['m2'] = slider_m2.val current_params['l1'] = slider_l1.val current_params['l2'] = slider_l2.val current_params['theta1'] = slider_theta1.val current_params['theta2'] = slider_theta2.val current_params['omega1'] = 0.0 current_params['omega2'] = 0.0 # Re-run the simulation with new parameters t, y = simulate(current_params) theta1_vals = y[0] theta2_vals = y[1] # Clear the trace and reset animation frame index trace_x.clear() trace_y.clear() ani.frame_seq = ani.new_frame_seq() fig.canvas.draw_idle() # Call update_simulation when any slider value changes slider_m1.on_changed(update_simulation) slider_m2.on_changed(update_simulation) slider_l1.on_changed(update_simulation) slider_l2.on_changed(update_simulation) slider_theta1.on_changed(update_simulation) slider_theta2.on_changed(update_simulation) # Button to reset sliders to default values reset_ax = plt.axes([0.8, 0.05, 0.1, 0.04]) button_reset = Button(reset_ax, 'Reset', color=axcolor, hovercolor='0.975') def reset(event): slider_m1.reset() slider_m2.reset() slider_l1.reset() slider_l2.reset() slider_theta1.reset() slider_theta2.reset() button_reset.on_clicked(reset) # Create the animation ani = FuncAnimation(fig, update, frames=len(t), init_func=init, interval=20, blit=True) plt.show()