
2026/01/24 22:21 1/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 1/28

Jeżeli chcesz zacytować tą pracę to użyj indetyfikatora DOI:
Ostrowski, K. (2025). Projekt systemu pomiarowo-kontrolnego na bazie Arduino (Wersja 1). Zenodo.
https://doi.org/10.5281/zenodo.15270122

Arduino: Projekt Systemu pomiarowo-
kontrolnego

Kacper Ostrowski

Wstęp

Przykład kontenera z osprzętem satelitarnym

W dobie dynamicznego rozwoju systemów automatyki i zdalnego nadzoru coraz większe znaczenie
zyskują rozwiązania umożliwiające stały monitoring oraz kontrolę parametrów środowiskowych w
różnego rodzaju obiektach technicznych. Jednym z takich obiektów są kontenery ze sprzętem
elektronicznym, często instalowane w bezpośrednim sąsiedztwie anten komunikacyjnych, w których
kluczowe znaczenie ma utrzymanie odpowiednich warunków temperaturowo-wilgotnościowych oraz
nadzór nad stanem infrastruktury.

Płytka Arduino Mega 2560

https://doi.org/10.5281/zenodo.15270122
https://wiki.ostrowski.net.pl/lib/exe/fetch.php?media=projekty:fiberglass-shelter-satellite-equipment.jpg
https://wiki.ostrowski.net.pl/lib/exe/fetch.php?media=projekty:mega.jpg

2026/01/24 22:21 2/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 2/28

Płytka Arduino Ethernet Shield

Celem niniejszej pracy jest przedstawienie projektu oraz realizacji systemu pomiarowo-kontrolnego
opartego na platformie Arduino MEGA z wykorzystaniem modułu Ethernet Shield. System ten został
zaprojektowany do monitorowania i sterowania środowiskiem wewnątrz kontenera technicznego, w
którym znajduje się sprzęt wspierający pracę anteny nadawczo-odbiorczej.

W skład funkcjonalności systemu wchodzi:

pomiar temperatury i wilgotności powietrza,
kontrola poboru prądu przez grzejnik znajdujący się wewnątrz kontenera,
detekcja otwarcia i zamknięcia drzwi,
monitorowanie obecności cieczy poprzez czujnik zalania.

Zebrane dane są przesyłane za pomocą interfejsu sieciowego, co umożliwia ich zdalny odczyt oraz
integrację z zewnętrznymi systemami nadzorującymi. Rozwiązanie to ma na celu zwiększenie
niezawodności pracy urządzeń znajdujących się w kontenerze poprzez wczesne wykrywanie
nieprawidłowości oraz zapewnienie odpowiednich warunków środowiskowych.

Opis ogólny działania systemu pomiarowo-
kontrolnego

Na poniższym schemacie blokowym przedstawiono uproszczoną strukturę działania systemu
pomiarowo-kontrolnego zbudowanego w oparciu o mikrokontroler Arduino MEGA oraz środowisko
Node-RED pracujące na serwerze. Celem systemu jest pozyskiwanie danych środowiskowych, analiza
ich poprawności, zapisywanie do bazy danych oraz prezentacja wyników użytkownikowi końcowemu.

https://wiki.ostrowski.net.pl/lib/exe/fetch.php?media=projekty:eth_shield.jpg

2026/01/24 22:21 3/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 3/28

Schemat blokowy systemu pomiarowo-kontrolnego

System składa się z następujących głównych części:

Moduł Arduino z Ethernet Shield – odpowiada za pobieranie danych z czujników oraz ich
przesyłanie do serwera za pomocą żądań HTTP.

Sensor DHT11 – mierzy temperaturę i wilgotność powietrza.

Opis: Zastosowano sensor w tej wersji ponieważ wahania temperatury wewnątrz kontenera nie
spadają poniżej zera

Przekładnik prądowy i tor pomiarowy – umożliwia pomiar poboru prądu przez grzejnik,
sygnał przekształcany jest na napięcie i odczytywany przez przetwornik ADC.

Opis: przekładnik prądowy zastosowany tutaj to prosty transformator, który wymaga
poniższego obwodu do poprawnego działania i konwersji napięć na poprawne takie które można
odczytać za pomocą przetwornika analogowego Arduino.

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:arduino_systemy.png

2026/01/24 22:21 4/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 4/28

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:precision_rectifier.jpg

2026/01/24 22:21 5/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 5/28

Schemat obwodu do obsługi przekładnika prądowego razem z pomiarami wykonanymi w
symulatorze TINA-TI

Serwer z oprogramowaniem Node-RED – realizuje główną logikę systemu:

cykliczne pobieranie danych z Arduino,
analiza zakresu poprawności danych,
zapis danych do bazy danych,
generowanie wykresów i raportów,
wysyłka powiadomień mailowych.

Opis poszczególnych modułów:

Moduł sprawdzający wartości danych – decyduje, czy parametry środowiskowe mieszczą
się w ustalonym zakresie.

Opis: Składa się z kilku części jedna część pobiera informację z płytki Arduino następnie dane
są weryfikowane czy nie przekraczają odpowiednich zakresów.

Moduł formatujący i wysyłający maile – wysyła ostrzeżenie w przypadku przekroczenia
progów alarmowych.

Opis: Pobiera informację jaki parametr został przekroczony na którym kontenerze i wysyła
maila

Moduł zapisu do bazy danych oraz rysowania wykresów – dane są zapisywane i
przedstawiane graficznie za pomocą zestawu skryptów w języku Python.

Opis: Formatuje kwerendę INSERT do bazy danych a następnie wpisuje te dane. Druga część to
zestaw skryptów w języku Python które łączą się do bazy danych a następnie pobierają i rysują
dane które zostają zapisane w katalogu WWW serwera apache. Panel Dashboard w node-red
potem się do nich odnosi.

Finalna strona użytkownika – strona WWW prezentująca aktualne wartości czujników,
wykresy oraz umożliwiająca zmianę zakresów monitorowanych parametrów.

Opis: Jest to dashboard zbudowany za pomocą narzędzia node-red prezentuje wykresy
aktualne parametry pozwala przełączyć zasilanie do grzejnika itp.

Moduły komunikacyjne i użytkowe:
Serwer pocztowy – obsługuje wysyłkę wiadomości email.

Opis: Jest to zewnętrzny serwer pocztowy na który program wysyła maile. Jest to element zewnętrzny
nie będziemy omawiać jego implementacji.

Baza danych i katalog serwera WWW – dane są przechowywane i udostępniane użytkownikowi
w postaci wykresów i historii pomiarów.

Opis: Są to zewnętrzne komponenty które pozwalają na zbieranie danych oraz na udostępnianie
wygenerowanych wykresów po sieci.

System został zaprojektowany z myślą o niezawodnym działaniu w trudnych warunkach
środowiskowych, umożliwiając szybką reakcję w razie przekroczenia parametrów krytycznych.

2026/01/24 22:21 6/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 6/28

Omówienie zasady działania systemu Node-
RED

Node-RED to środowisko programistyczne typu open-source, które umożliwia graficzne projektowanie
przepływów danych (tzw. flow) przy pomocy połączeń pomiędzy tzw. węzłami (nodes). Środowisko to
oparte jest na języku JavaScript (Node.js), a konfiguracja logiki systemu odbywa się z wykorzystaniem
intuicyjnego interfejsu przeglądarkowego.

Podstawowe pojęcia

Podstawową jednostką danych w systemie Node-RED jest obiekt msg, który zawiera dane
przekazywane między węzłami. Każdy node przyjmuje dane wejściowe, wykonuje określoną operację,
a następnie przesyła wynik do kolejnych węzłów w postaci zaktualizowanego obiektu msg. Obiekt ten
ma strukturę podobną do JSON i może zawierać następujące właściwości:

msg.payload – główna część wiadomości zawierająca dane przesyłane przez system.
msg.topic – etykieta opisująca temat wiadomości (używana np. do filtrowania).
msg.timestamp – znacznik czasu nadania wiadomości.
inne niestandardowe właściwości – mogą być dodane przez użytkownika lub przez węzły (np.
msg.sensorType, msg.alert, itp.).

Przepływ danych między węzłami

Węzły (nodes) są specjalizowanymi blokami funkcyjnymi, które realizują konkretne operacje.
Przykładowe typy węzłów:

inject – inicjuje przepływ danych (np. co 5 minut).
http request – pobiera dane z zewnętrznego źródła (np. Arduino).
function – przetwarza dane przy pomocy kodu JavaScript.
switch – sprawdza warunki logiczne i kieruje dane na odpowiednie ścieżki.
debug – służy do testowania i podglądu zawartości wiadomości.
email – wysyła wiadomości e-mail.
database – zapisuje dane do bazy (np. MySQL, SQLite).

W momencie przesłania danych z jednego węzła do drugiego, obiekt msg zostaje przekazany dalej.
Każdy węzeł może odczytać, zmodyfikować lub rozgałęzić wiadomość, co pozwala na budowanie
złożonych procesów przetwarzania informacji.

Zastosowanie w omawianym systemie

W omawianym systemie pomiarowo-kontrolnym Node-RED pełni rolę centralnej logiki zarządzania i
przetwarzania danych. Przykładowy przepływ danych wygląda następująco:

2026/01/24 22:21 7/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 7/28

Wyzwalacz czasowy (inject) uruchamia co 5 minut żądanie HTTP do Arduino.1.
Węzeł HTTP pobiera dane pomiarowe (np. temperatura, wilgotność, prąd).2.
Węzeł funkcyjny analizuje dane i zapisuje je w obiekcie msg.payload.3.
Węzeł warunkowy (switch) sprawdza, czy dane znajdują się w dopuszczalnym zakresie.4.
W zależności od wyniku, dane kierowane są do:5.

Węzła bazy danych, gdzie następuje ich zapis,
Węzła logującego, który tworzy wpis w historii systemu,
Węzła wysyłającego e-mail, w przypadku wystąpienia alarmu.

Dane są również przekazywane do modułu odpowiedzialnego za generowanie wykresów i6.
prezentowane użytkownikowi w postaci graficznej na stronie WWW.

Dzięki modularnej budowie system Node-RED pozwala w prosty sposób modyfikować lub
rozbudowywać logikę działania bez konieczności pisania dużej ilości kodu. Każdy z węzłów można
edytować wizualnie, a debugowanie odbywa się w czasie rzeczywistym.

Omówienie i analiza przepływów na
platformie Node-RED

2026/01/24 22:21 8/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 8/28

Przykład strony zwracanej przez Arduino

Środowisko Node-RED zostało wykorzystane jako centralny komponent systemu odpowiedzialny za
komunikację z urządzeniem pomiarowym (Arduino), przetwarzanie danych oraz ich dalszą dystrybucję
do pozostałych elementów infrastruktury informatycznej (baza danych, serwer WWW, system
powiadamiania). Ze względu na swoją modularną budowę oraz intuicyjny interfejs graficzny, Node-
RED doskonale sprawdza się w systemach automatyki, monitoringu oraz zbierania danych w czasie
rzeczywistym.

Stworzony program został podzielony na zestaw logicznych bloków, z których każdy odpowiada za
realizację konkretnego zadania w ramach systemu. Dzięki takiej strukturze możliwe było zapewnienie
wysokiej przejrzystości działania oraz łatwości rozbudowy o dodatkowe funkcjonalności.

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:ard_html.png

2026/01/24 22:21 9/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 9/28

Bloki: Main Logic i Graphing

Widok bloków z aplikacji Node-RED

Listingi poszczególnych węzłów funkcyjnych

// Extract the payload
let payload = msg.payload;
msg.container = "S5";
// Initialize the result object
let result = {
 analog_sensors: {},
 digital_inputs: {}
};

// Regex patterns to match the sensor readings
let analogSensorPattern = /<tr><td>([^<]+)<\/td><td>([^<]+)<\/td><\/tr>/g;
let digitalSensorPattern = /<tr><td>([^<]+)<\/td><td>([^<]+)<\/td><\/tr>/g;

// Extract analog sensor readings
let match;
while (match = analogSensorPattern.exec(payload)) {
 let sensorName = match[1].trim();
 let sensorValue = match[2].trim();
 result.analog_sensors[sensorName] = sensorValue;
}

// Extract digital input readings
while (match = digitalSensorPattern.exec(payload)) {
 let sensorName = match[1].trim();
 let sensorValue = match[2].trim();
 result.digital_inputs[sensorName] = sensorValue;
}

// Return the result as a JSON object
msg.payload = result;
return msg;

// Extract the payload (HTML content)

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:1.png

2026/01/24 22:21 10/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 10/28

let html = msg.payload;

// Initialize a variable to store the heater status
let heaterStatus = "Unknown";

// Use a regular expression to find the heater status
let statusMatch = html.match(/<p class='status-(on|off)'>Status:
(ON|OFF)/i);

if (statusMatch) {
 // Extract the status (ON or OFF) from the match
 heaterStatus = statusMatch[2];
}

// Set the heater status as the new payload
msg.payload = heaterStatus;

// Return the modified message
return msg;

// Initialize an empty array to store digital sensor data
let digitalSensorsArray = [];

// Extract the digital_inputs object from the payload
let digitalInputs = msg.payload.digital_inputs;

// Loop through each key-value pair in the digital_inputs object
for (let [sensorName, sensorValue] of Object.entries(digitalInputs)) {
 // Push each sensor's name and value as an object to the array
 digitalSensorsArray.push({
 name: sensorName,
 value: sensorValue
 });
}

// Set the output message payload to the array of digital sensors
msg.payload = digitalSensorsArray;

// Return the modified message
return msg;

// Extract the digital sensors array from the incoming message payload
let digitalSensorsArray = msg.payload;

// Initialize an empty array to store sensors with value "0"
let sensorsWithZeroValue = [];

// Loop through each sensor in the array
for (let sensor of digitalSensorsArray) {
 // Check if the sensor's name starts with "Waveguide Position"
 if (!sensor.name.startsWith("Waveguide Position")) {

2026/01/24 22:21 11/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 11/28

 // Check if the sensor's value is "0"
 if (sensor.value === "0") {
 // Add the sensor to the array of sensors with value "0"
 sensorsWithZeroValue.push(sensor);
 }
 }
}

// Check if there are any sensors with value "0"
if (sensorsWithZeroValue.length > 0) {
 // Set the message payload to the array of sensors with value "0"
 msg.payload = sensorsWithZeroValue;
 // Return the message to the next node
 return msg;
} else {
 // If no sensors have value "0", return null (which means the message is
discarded)
 return null;
}

// Access the temperature value from the JSON object
msg.payload = parseInt(msg.payload.analog_sensors["Temperature"]);
msg.name = "Temperature"
msg.container = "S5";
// Return the modified message
return msg;

// Access the temperature value from the JSON object
msg.payload = parseInt(msg.payload.analog_sensors["Humidity"]);
msg.name = "Humidity";
msg.container = "S5";
// Return the modified message
return msg;

// Access the temperature value from the JSON object
msg.payload = msg.payload.analog_sensors["Electric Current"];
msg.payload = parseFloat(msg.payload.match(/[\d.]+/)[0]);
msg.name = "Electric Current";
msg.container = "S5";
// Return the modified message
return msg;

msg.topic = `INSERT INTO \`S5_Temperature\` (\`DATE\`, \`VALUE\`) VALUES
(now(), '${msg.payload}');`;

return msg;

//pierwszy
msg.url = "http://<ip serwer www>/graphs/S5_Temperature_1d.png";
return msg;
//drugi

2026/01/24 22:21 12/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 12/28

msg.url = "http://<ip serwer www>/graphs/S5_Current_1d.png";
return msg;
//trzeci
msg.url = "http://<ip serwer www>/graphs/S5_Humidity_1d.png";
return msg;

Wyjaśnienie zasady działania węzłów

Węzeł: Extract Data from Web Węzeł odpowiedzialny za przetwarzanie danych HTML pobranych1.
ze strony WWW. W pierwszej kolejności przypisuje zawartość msg.payload do zmiennej
payload oraz ustawia nazwę kontenera jako S5 (msg.container). Następnie tworzy pusty
obiekt result, zawierający dwie sekcje: analog_sensors oraz digital_inputs. Za
pomocą wyrażeń regularnych
/ <tr><td>([^<]+)<\/td><td>([^<]+)<\/td><\/tr>/g
przeszukuje dane HTML w celu wyodrębnienia nazw i wartości sensorów analogowych i
cyfrowych. W każdej pętli while, odnalezione dane przypisywane są do odpowiednich pól w
obiekcie result. Na końcu wynikowy obiekt JSON jest przypisywany do msg.payload i
przekazywany dalej.

Węzeł: Extract heater status Węzeł służy do odczytu stanu grzejnika na podstawie treści HTML2.
przekazanej w msg.payload. Za pomocą wyrażenia regularnego /<p class=’status-
(on|off)’>
Status: (ON|OFF)/i wyszukiwany jest fragment HTML zawierający informację o stanie
urządzenia. Jeśli dopasowanie zakończy się powodzeniem (if (statusMatch)), z drugiego
elementu tablicy wynikowej statusMatch[2] pobierany jest status grzejnika (np. ON lub OFF).
Wartość ta przypisywana jest do msg.payload i przekazywana dalej w przepływie.

Węzeł: Extract Digital in simpler array Węzeł przekształca dane wejściowe z obiektu3.
msg.payload.digital_inputs na prostszą formę — tablicę obiektów. Na początku tworzona
jest pusta tablica digitalSensorsArray, do której kolejno dodawane są obiekty zawierające
nazwę i wartość każdego czujnika cyfrowego (name, value). Dane są pozyskiwane za pomocą
pętli for (let [sensorName, sensorValue] of Object.entries(...)), a wynik
przypisywany do msg.payload jako nowa, uproszczona struktura danych.

Węzeł: check status Węzeł analizuje dane wejściowe zawarte w msg.payload, które stanowią4.
tablicę czujników cyfrowych. Dla każdego czujnika wykonywana jest kontrola — jeśli jego nazwa
nie zaczyna się od "Waveguide Position" oraz jego wartość wynosi "0", to czujnik zostaje
dodany do nowej tablicy sensorsWithZeroValue. Jeśli po zakończeniu pętli tablica zawiera
jakiekolwiek elementy, zostaje ona ustawiona jako nowe msg.payload i przekazana dalej. W
przeciwnym przypadku węzeł zwraca null, co powoduje przerwanie dalszego przetwarzania
wiadomości.

Węzeł: Extract Temperature Węzeł pobiera wartość temperatury z pola5.
analog_sensors["Temperature"] znajdującego się w msg.payload, a następnie
konwertuje ją do liczby całkowitej za pomocą parseInt(...), przypisując wynik z powrotem
do msg.payload. Ustawia również identyfikatory msg.name oraz msg.container

2026/01/24 22:21 13/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 13/28

odpowiednio na "Temperature" i "S5".

Węzeł: Extract Humidity Analogicznie do poprzedniego węzła, pobiera wartość wilgotności z6.
analog_sensors["Humidity"], konwertuje ją na liczbę całkowitą funkcją parseInt(...) i
przypisuje do msg.payload. Ustawia także nazwę parametru i kontenera w msg.name oraz
msg.container.

Węzeł: Extract Current Węzeł odpowiedzialny za ekstrakcję wartości natężenia prądu z pola7.
analog_sensors["Electric Current"]. Używa wyrażenia regularnego
msg.payload.match(/[.]̣+/) do wyłuskania liczby zmiennoprzecinkowej z tekstu, a
następnie przekształca ją do typu float. Dodaje również pola opisujące nazwę parametru i
kontener.

Węzeł: make SQL query Generuje zapytanie SQL wstawiające wartość pomiaru temperatury do8.
tabeli S5_Temperature z aktualnym znacznikiem czasu. Tworzy pole msg.topic zawierające
zapytanie w formacie
INSERT INTO ... VALUES (now(), '${msg.payload}').

Węzły: set URL Każdy z węzłów ustawia odpowiedni adres URL wykresu parametru w polu9.
msg.url:

Pierwszy węzeł: S5_Temperature_1d.png
Drugi węzeł: S5_Current_1d.png
Trzeci węzeł: S5_Humidity_1d.png

Adresy odnoszą się do zasobów graficznych generowanych przez zewnętrzny serwer WWW.

Bloki: Thresholds i CATCH ERRORS

Widok bloków z aplikacji Node-RED

Listingi poszczególnych węzłów funkcyjnych

msg.lowerThreshold = global.get("temperatureLowerThold","file");
msg.upperThreshold = global.get("temperatureUpperThold","file");

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:2.png

2026/01/24 22:21 14/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 14/28

return msg;

let value = msg.payload; // The incoming numeric value
let name = msg.name; // Variable name
let lowerThreshold = msg.lowerThreshold; // Lower boundary
let upperThreshold = msg.upperThreshold; // Upper boundary
let container = msg.container; // Name of the container
msg.url = "http://api.ttcomm.net/graphs/S5_Temperature_1d.png";
msg.value = value; //used for extracting it for email

if (value < lowerThreshold || value > upperThreshold) {
 msg.topic = `INSERT INTO \`thold_log\` (\`TIME\`, \`CONTAINER\`,
\`LOG\`)
 VALUES (NOW(), '${container}',
 'Parameter ${name} in container ${container} has a value of ${value},
which is outside the set boundaries (${lowerThreshold} -
${upperThreshold}).');`;
 return msg; // Send the message to the next node
} else {
 return null;
}

Wyjaśnienie zasady działania węzłów

Węzeł: setValuesForThresholdNode Węzeł ten pobiera z pamięci globalnej zdefiniowane progi1.
temperatury: dolny temperatureLowerThold oraz górny temperatureUpperThold,
zapisane w pliku konfiguracyjnym (drugi parametr: "file"). Ustawia je w wiadomości jako pola
msg.lowerThreshold oraz msg.upperThreshold, umożliwiając ich dalsze użycie w logice
porównawczej.

Węzeł: thold Węzeł służy do porównania wartości pomiaru z zadanymi progami. Na podstawie2.
pól msg.payload (wartość), msg.lowerThreshold, msg.upperThreshold, msg.name oraz
msg.container wykonywana jest kontrola, czy wartość wychodzi poza zadane granice. Jeśli
tak, to generowane jest zapytanie SQL (msg.topic) dodające rekord do tabeli thold_log,
zawierający czas, nazwę kontenera oraz opis przekroczenia. Dodatkowo przypisywane są pola
msg.url (link do wykresu) oraz msg.value (wykorzystywana np. do wiadomości e-mail). Jeśli
wartość mieści się w dopuszczalnych granicach, węzeł zwraca null, zatrzymując dalszy
przepływ wiadomości.

Blok: Show logs in table

2026/01/24 22:21 15/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 15/28

Widok bloków z aplikacji Node-RED

Listingi poszczególnych węzłów funkcyjnych

msg.topic = `SELECT * FROM thold_log;`;
return msg;

Zasada działania

Tutaj zasada działania jest bardzo prosta pobieramy wszystko co jest w tabeli thold_log a następnie
wyświetlamy to w interfejsie w formie tabeli.

Blok: Send Numerical notificaiton from numerical sensors

Widok bloków z aplikacji Node-RED

Listingi poszczególnych węzłów funkcyjnych

msg.from = "node-red@ttcomm.net"
msg.topic = `Alert: ${msg.container} ${msg.name} is outside thresholds`;
msg.payload = `Parameter ${msg.name} in container ${msg.container} has a
value of ${msg.value}, which is outside the set boundaries
(${msg.lowerThreshold} - ${msg.upperThreshold})
Click here to view graph`;
return msg;;

Zasada działania

Tutaj pobieramy z obiektu msg potrzebne parametry żeby utworzyć wiadomośc email aby następnie
wysłać ją do odpowiednich użytkowników

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:3.png
https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:4.png

2026/01/24 22:21 16/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 16/28

Blok: Thold settings

Widok bloków z aplikacji Node-RED

Listingi poszczególnych węzłów funkcyjnych

//bloki lower
global.set("humidityLowerThold", msg.payload, "file");
//bloki upper
global.set("currentUpperThold", msg.payload, "file");

Zasada działania

Tutaj ustawiamy wartości globalne dla poszczególnych thresholdów. Są one nastepnie
wykorzystywane w poprzednich omawianych tutaj przepływach.

Blok: Send email notification from digital sensors

Widok bloków z aplikacji Node-RED

Listingi poszczególnych węzłów funkcyjnych

msg.from = "node-red@ttcomm.net"
msg.topic = `Alert: ${msg.container} digital sensors changed status`;
msg.payload = `Sensor in container ${msg.container} status:
${msg.sensorStatusString}`;
return msg;

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:5.png
https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:6.png

2026/01/24 22:21 17/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 17/28

Zasada działania

Ten blok jest potrzebny z racji trochę innej struktury maili dla sensorów z wartościami numerycznymi.

Blok: Python graphing

Widok bloków z aplikacji Node-RED

Zasada działania

Przedstawiony przepływ Node-RED realizuje automatyczną oraz ręczną generację wykresów na
podstawie skryptów Pythona. Cztery wyzwalacze czasowe (co 5 minut, 8 godzin, 48 godzin, oraz 500
godzin) inicjują wykonanie odpowiednich skryptów generujących wykresy dla okresów: 1, 7, 30 i 365
dni. Dodatkowo, zastosowany został przycisk umożliwiający ręczne wygenerowanie wszystkich
wykresów jednocześnie oraz kolejny przycisk służący do powrotu do domyślnego widoku wykresów.
Wyniki uruchamiania skryptów prezentowane są użytkownikowi na pulpicie Node-RED poprzez
elementy UI, wyświetlające logi z wykonania skryptów oraz powiadomienia („toast”). Całość interfejsu
dopełnia element typu iframe, w którym użytkownik może wygodnie przeglądać wygenerowane
wykresy.

Skrypt w Pythonie do generowania grafów

Skrypt odpowiedzialny jest za automatyczne generowanie wykresów parametrów środowiskowych
takich jak temperatura, wilgotność oraz pobór prądu na podstawie danych zgromadzonych w bazie
MySQL. Dane te są następnie przetwarzane i wizualizowane w formie wykresów PNG, które mogą być
publikowane w sieci lokalnej lub w przeglądarce użytkownika końcowego.

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:7.png

2026/01/24 22:21 18/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 18/28

Przykład grafu wygenerowanego przez skrypt

Opis działania skryptu

Skrypt rozpoczyna działanie od zaimportowania niezbędnych bibliotek: pymysql do komunikacji z
bazą danych, matplotlib.pyplot do generowania wykresów, pandas do analizy danych oraz
datetime do obsługi czasu (linia 1–5).

Funkcja plot_1d_graph(table_name) przyjmuje jako argument nazwę tabeli z bazy danych, z
której zostaną pobrane dane (linia 7). Następnie nawiązywane jest połączenie z bazą danych
MySQL (linia 9–13), a dane z kolumn DATE oraz VALUE są pobierane do ramki danych DataFrame
przy użyciu zapytania SQL (linia 16).

Po pobraniu danych połączenie zostaje zamknięte (linia 19), a kolumna DATE jest konwertowana
do typu datetime (linia 22), co umożliwia filtrowanie danych w zadanym zakresie czasu.

Zakres czasowy ustalany jest na ostatnie 24 godziny, co realizuje fragment:

start_date = datetime.now() - timedelta(days=1)
 filtered_df = df[df['DATE'] >= start_date]

Następnie, za pomocą biblioteki matplotlib, generowany jest wykres typu liniowego (linia
27–31). Na wykresie umieszczane są podpisy osi oraz tytuł wykresu, który zawiera nazwę tabeli.

Wygenerowany wykres jest zapisywany jako plik PNG w katalogu /var/www/html/graphs/ pod
nazwą odpowiadającą nazwie tabeli z przyrostkiem _1d (linia 34).

Na końcu, skrypt wywołuje funkcję plot_1d_graph trzykrotnie dla różnych tabel:

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:graph.png

2026/01/24 22:21 19/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 19/28

S5_Temperature
S5_Humidity
S5_Current

Każde z tych wywołań skutkuje wygenerowaniem osobnego wykresu z ostatnich 24 godzin dla danego
parametru.

import pymysql
import matplotlib.pyplot as plt
import pandas as pd
from datetime import datetime, timedelta

def plot_1d_graph(table_name):
Establish connection to the MySQL database
conn = pymysql.connect(
host='localhost', # Your MySQL host
user='administrator', # Your MySQL username
password='PASS',# Your MySQL password
database='mcTTcomm' # Your database name
)

Fetch data from the specified table
query = f"SELECT DATE, VALUE FROM {table_name}"
df = pd.read_sql(query, conn)

Close the connection
conn.close()

Convert 'DATE' column to datetime format
df['DATE'] = pd.to_datetime(df['DATE'])

Define time range for 1 day
start_date = datetime.now() - timedelta(days=1)
filtered_df = df[df['DATE'] >= start_date]

Plotting
plt.figure(figsize=(10, 6))
plt.plot(filtered_df['DATE'], filtered_df['VALUE'], linestyle='-')
plt.title(f'{table_name} Measurements Over Last 1 Day')
plt.xlabel('Date')
plt.ylabel('Value')
plt.grid(True);

Save the plot as a PNG file
output_path = f'/var/www/html/graphs/{table_name}_1d.png'
plt.savefig(output_path)
plt.close()

print(f"1-day graph saved to {output_path}")

Example usage:

2026/01/24 22:21 20/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 20/28

plot_1d_graph('S5_Temperature')
plot_1d_graph('S5_Humidity')
plot_1d_graph('S5_Current')

Interfejs Graficzny

Główna strona interfejsu

Główna strona aplikacji prezentuje kluczowe informacje w czytelnej formie graficznej. Znajdują się
tutaj trzy wskaźniki wskazówkowe (gauges), pokazujące odczyty bieżących parametrów
środowiskowych: temperatury, wilgotności oraz natężenia prądu elektrycznego. Dodatkowo,
użytkownik posiada możliwość manualnej kontroli urządzenia grzewczego, które można załączać lub
wyłączać z częstotliwością maksymalnie raz na 5 minut. Po prawej stronie znajduje się przestrzeń do
wyświetlania aktualnych wykresów przedstawiających historię pomiarów dla ostatniego dnia.

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:gui1.png

2026/01/24 22:21 21/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 21/28

Tabela z logami

Zakładka tabeli z logami wyświetla szczegółowe informacje o zdarzeniach systemowych. Każdy rekord
zawiera znacznik czasowy konkretnego zdarzenia, identyfikator kontenera, którego dotyczy zdarzenie
oraz treść powiadomienia. Logi informują przede wszystkim o przekroczeniach zdefiniowanych progów
parametrów środowiskowych (np. temperatura poza dopuszczalnym zakresem).

Ustawienia progów powiadomień

Interfejs ustawień pozwala użytkownikowi na konfigurację progów upozorowaniowych dla
poszczególnych parametrów środowiskowych. Parametry te to górne i dolne limity temperatury,
wilgotności oraz natężenia prądu elektrycznego. Po lewej stronie widoczna jest aktualna konfiguracja,
natomiast po prawej stronie użytkownik może intuicyjnie dostosowywać te wartości przy użyciu
suwaków.

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:gui2.png
https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:gui3.png

2026/01/24 22:21 22/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 22/28

Interfejs do przeglądania grafów

Sekcja przeglądania wykresów pozwala na generowanie oraz wizualizację wcześniej zapisanych plików
graficznych prezentujących historyczne pomiary parametrów. Po lewej stronie widoczne są logi
informujące użytkownika o statusie generacji wykresów wraz z możliwością ich wyczyszczenia. Po
prawej stronie znajduje się widok katalogu z wygenerowanymi wykresami, posortowanymi według
parametrów oraz zakresów czasowych (np. 1 dzień, 7 dni, 30 dni oraz 1 rok). Użytkownik może
również ręcznie wymusić wygenerowanie wszystkich wykresów za pomocą dedykowanego przycisku.

Spisy

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aprojektsystemupomiarowokontrolnegonabaziearduino&media=projekty:gui4.png

2026/01/24 22:21 23/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 23/28

Wykaz załączników

Skrypt bazy danych oraz dane które system zebrał1.
db.zip

Kod dla platformy Arduino MEGA2.

arduino.ino

#include <Streaming.h>
#include <SimpleDHT.h>
#include <SPI.h>
#include <Ethernet.h>
#include <C:\Users\kostrowski\Desktop\program\AVT5636lib.h>
#include <Servo.h>
#include <C:\Users\kostrowski\Desktop\program\MemoryFree.h>

AVT5636 myBoard;
Servo myServo;

SimpleDHT11 dht11;

byte mac[] = {
 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
IPAddress ip(192, 168, 80, 53);

// Initialize the Ethernet server library
EthernetServer server(8080);

float temperature;
float humidity;

int term2=0;
int term3=0;
int term4=0;
int term5=0;

uint32_t prevMillis = millis();

void setup() {
 pinMode(22, INPUT_PULLUP);
 pinMode(24, INPUT_PULLUP);
 pinMode(26, INPUT_PULLUP);
 pinMode(28, INPUT_PULLUP);
 pinMode(30, INPUT_PULLUP);
 myBoard.init();
 myServo.attach(PULSE2_PIN);
 //delay(3000);

https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=projekty:projektsystemupomiarowokontrolnegonabaziearduino&codeblock=17

2026/01/24 22:21 24/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 24/28

 //Serial.begin(9600);
 //while (!Serial) {
 // ; // wait for serial port to connect. Needed for native USB port
only
 //}

 Ethernet.begin(mac, ip);
 server.begin();
 //Serial.print("server is at ");
 //Serial.println(Ethernet.localIP());

}

String HTTP_req;
bool LED_status4 = 0;
bool LED_status3 = 0;
bool LED_status2 = 0;

int IntTemperature;
int IntHumidity;

unsigned long previousMillis = 0;

float CurrentSensor = 0;

void loop() {
 CurrentSensor = ((5.0/1024.0)*analogRead(10))*10;
 //Serial.println(CurrentSensor);

 LED_status4 = 0;
 LED_status3 = 0;

 unsigned long currentMillis = millis();

 if (currentMillis - previousMillis >= 60000) {

 previousMillis = currentMillis;
 delay(2000);

 byte temperature = 0;
 byte humidity = 0;
 byte err = SimpleDHTErrSuccess;

 if ((err = dht11.read(31, &temperature, &humidity, NULL)) !=
SimpleDHTErrSuccess) {
 //Serial.print("Failed to read from DHT sensor, err=");
 //Serial.println(err);
 return;
 }

2026/01/24 22:21 25/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 25/28

 IntTemperature = temperature;
 IntHumidity = humidity;
 term2 = temperature;
 term3 = humidity;
 }

 term4 = 444;
 term5 = 555;

 EthernetClient a = server.available();
 serveWebsite(a);

}

EthernetClient serveWebsite(EthernetClient client){
 if (client) {
 //Serial.println("new client");
 bool currentLineIsBlank = true;
 while (client.connected()) {
 //Serial.println("test1");
 if (client.available()) {
 //Serial.println("test2");
 char c = client.read();
 //Serial.write(c);
 HTTP_req += c;
 if (c == '\n' && currentLineIsBlank) {
 //Serial.println("test3");
 if (HTTP_req.indexOf("LED4=On") > -1) { LED_status4 = 1; }
 if (HTTP_req.indexOf("LED4=Off") > -1) { LED_status4 = 0; }
 if (HTTP_req.indexOf("LED3=On") > -1) { LED_status3 = 1; }
 if (HTTP_req.indexOf("LED3=Off") > -1) { LED_status3 = 0; }
 if (HTTP_req.indexOf("LED2=On") > -1) { LED_status2 = 1; }
 if (HTTP_req.indexOf("LED2=Off") > -1) { LED_status2 = 0; }

 client.println(F("HTTP/1.1 200 OK"));
 client.println("Content-Type: text/html");
 client.println("Connection: close");
 //client.println("Refresh: 10; URL=/");
 client.println();
 client.println("<!DOCTYPE HTML>");
 client.println("<html>");
 client.println("<head>");
 client.println("<meta name=\"viewport\"
content=\"width=device-width, initial-scale=1\">");
 // client.println("<style>");
 // client.println("body { font-family: Arial, sans-serif;
margin: 0; padding: 0; font-size: 12px; }");
 // client.println("h2 { color: #333; }");
 // client.println(".container { width: 80%; margin: 0 auto;

2026/01/24 22:21 26/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 26/28

padding: 20px; }");
 // client.println("table { width: 100%; border-collapse:
collapse; margin-bottom: 20px; }");
 // client.println("th, td { padding: 8px; text-align: left;
border-bottom: 1px solid #ddd; }");
 // client.println("tr:hover { background-color: #f5f5f5; }");
 // client.println(".btn { padding: 8px 16px; margin: 5px;
text-decoration: none; color: white; border: none; display: inline-
block; font-size: 12px; }");
 // client.println(".btn-on { background-color: #4CAF50; }");
 // client.println(".btn-off { background-color: #f44336; }");
 // client.println(".status-on { background-color: #39FF14;
}"); // Neon green
 // client.println(".status-off { background-color: #FF073A;
}"); // Neon red
 // client.println("</style>");
 client.println("</head>");
 client.println("<body>");
 client.println("<div class=\"container\">");
 client.println("<h2>System Pomiarowo-Kontrolny TTCOMM
Sp.z.o.o.</h2>");
 client.println("<h4>Opracowano przez: Kacper
Ostrowski</h4>");
 client.println("<h4>Wersja z dnia: 11.06.2024</h4>");
 client.println("<h2>Analog Sensor Readings</h2>");
 client.println("<table>");
 client.println("<tr><th>Sensor</th><th>Value</th></tr>");

 client.println("<tr><td>Temperature</td><td>" +
String(IntTemperature) + " C</td></tr>");
 client.println("<tr><td>Humidity</td><td>" +
String(IntHumidity) + " %</td></tr>");

 client.println("<tr><td>Electric Current</td><td>
"+String(CurrentSensor)+" A</td></tr>");
 client.println("</table>");
 client.println("<h2>Digital Input Readings</h2>");
 client.println("<table>");
 client.println("<tr><th>Sensor</th><th>Value</th></tr>");
 client.print("<tr><td>Door Open/Closed</td><td>");
 client.print(digitalRead(22));
 client.println("</td></tr>");
 client.print("<tr><td>Flood sensor</td><td>");
 client.print(digitalRead(24));
 client.println("</td></tr>");
 client.print("<tr><td>Waveguide Position 1</td><td>");
 client.print(digitalRead(26));
 client.println("</td></tr>");
 client.print("<tr><td>Waveguide Position 2</td><td>");
 client.print(digitalRead(28));
 client.println("</td></tr>");

2026/01/24 22:21 27/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 27/28

 client.print("<tr><td>Waveguide Power Supply</td><td>");
 client.print(digitalRead(30));
 client.println("</td></tr>");
 client.println("</table>");
 client.println("<h2>Control Buttons</h2>");
 client.println("Override Control Buttons:");
 client.println("<form method='get'>");

 // LED4 control and mode selection
 client.println("<p>Waveguide position 1: <button name='LED4'
type='submit' class='btn btn-on' value='On'>ON</button> Please check
afterwards the status of position in the above table");
 //client.println("<button name='LED4' type='submit'
class='btn btn-off' value='Off'>OFF</button>");

 if (LED_status4) {
 myBoard.ledOn(4);
 delay(3000);
 myBoard.ledOff(4);
 delay(3000);
 } else {
 myBoard.ledOff(4);
 }

 // LED3 control and mode selection
 client.println("<p>Waveguide position 2: <button name='LED3'
type='submit' class='btn btn-on' value='On'>ON</button> Please check
afterwards the status of position in the above table");
 //client.println("<button name='LED3' type='submit'
class='btn btn-off' value='Off'>OFF</button>");

 if (LED_status3) {
 myBoard.ledOn(3);
 delay(3000);
 myBoard.ledOff(3);
 delay(3000);
 } else {
 myBoard.ledOff(3);
 }

 // LED2 control and mode selection
 client.println("<p>Room Heater: <button name='LED2'
type='submit' class='btn btn-on' value='On'>ON</button>");
 client.println("<button name='LED2' type='submit' class='btn
btn-off' value='Off'>OFF</button>");

 if (LED_status2) {
 myBoard.ledOn(2);
 client.println("<p class='status-on'>Status: ON");

2026/01/24 22:21 28/28 Arduino: Projekt Systemu pomiarowo-kontrolnego

made by Kacper Ostrowski 28/28

 } else {
 myBoard.ledOff(2);
 client.println("<p class='status-off'>Status: OFF");
 }

 client.println("</form>");
 client.println("</div>");
 client.println("</body>");
 client.println("</html>");

 HTTP_req = "";
 break;
 }
 if (c == '\n') {
 currentLineIsBlank = true;
 } else if (c != '\r') {
 currentLineIsBlank = false;
 }
 }
 }
 client.stop();

 //Serial.println("client disconnected");
 }
}

	Arduino: Projekt Systemu pomiarowo-kontrolnego
	Wstęp
	Opis ogólny działania systemu pomiarowo-kontrolnego
	Omówienie zasady działania systemu Node-RED
	Podstawowe pojęcia
	Przepływ danych między węzłami
	Zastosowanie w omawianym systemie

	Omówienie i analiza przepływów na platformie Node-RED
	Bloki: Main Logic i Graphing
	Listingi poszczególnych węzłów funkcyjnych
	Wyjaśnienie zasady działania węzłów

	Bloki: Thresholds i CATCH ERRORS
	Listingi poszczególnych węzłów funkcyjnych
	Wyjaśnienie zasady działania węzłów

	Blok: Show logs in table
	Listingi poszczególnych węzłów funkcyjnych
	Zasada działania

	Blok: Send Numerical notificaiton from numerical sensors
	Listingi poszczególnych węzłów funkcyjnych
	Zasada działania

	Blok: Thold settings
	Listingi poszczególnych węzłów funkcyjnych
	Zasada działania

	Blok: Send email notification from digital sensors
	Listingi poszczególnych węzłów funkcyjnych
	Zasada działania

	Blok: Python graphing
	Zasada działania

	Skrypt w Pythonie do generowania grafów
	Opis działania skryptu

	Interfejs Graficzny
	Spisy
	Wykaz załączników

