
2026/01/24 22:07 1/7 Arduino: ArdunioADCs-Hack

made by Kacper Ostrowski 1/7

pliki:

trans_ard_wav.py

translate_to_pwm.py

wave_file_writer.py

Arduino: ArdunioADCs-Hack

Proste rozwiązanie do przekształcania wygenerowanych przez Pythona fal do wartości PWM dla
Arduino oraz konwertowania wartości wejścia analogowego Arduino na pliki WAV.

 Arduino

Spis treści:

W jakich projektach możesz użyć tego narzędzia?1.
Jakie są części tego narzędzia?2.
Wyjaśnienie części narzędzi3.
Jak korzystać z tego narzędzia?4.
Lista rzeczy do zrobienia5.
Wnioski6.

Gdzie możesz użyć tego narzędzia?

Stworzyłem ten zestaw narzędzi, ponieważ pomyślałem, że będzie to interesujące, aby rejestrować
fale za pomocą wejść analogowych Arduino, a następnie używać np. Audacity do edytowania i
inspekcji zarejestrowanej fali za pomocą np. FFT. Może być także używane do rejestrowania odczytów
z czujnika, można zostawić Raspberry Pi z prostym skryptem PyFirmata, który będzie odczytywał

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=projekty%3Aarduinoadcshack&media=projekty:arduino.jpg

2026/01/24 22:07 2/7 Arduino: ArdunioADCs-Hack

made by Kacper Ostrowski 2/7

wartości i zapisywał je do pliku tekstowego, a potem po dłuższym czasie możesz wrócić, skopiować
plik, wprowadzić go do mojego skryptu, który go przekonwertuje, a następnie narysować go lub
zapisać w pliku WAV.

Części tego narzędzia.

To narzędzie składa się z kilku części:

values.txt - w tym pliku wklejasz wartości do wave_file_writer.py, powinny być w zakresie od
-32768 do 32768
input.txt - w tym pliku wklejasz lub zapisujesz wartości odczytane przez ADC Arduino, powinny
być w zakresie od 0 do 1024
pwm.txt - to plik, w którym umieszczasz wartości do translate_to_pwm.py, powinny być w
zakresie od -1 do 1
pwm.txt - to plik, w którym umieszczasz wartości do translate_to_pwm.py, powinny być w
zakresie od -1 do 1
wave_file_writer.py - ten skrypt służy, jak sama nazwa wskazuje, do zapisywania danych z
values.txt do pliku .wav
translate_to_pwm.py - ten skrypt konwertuje wartości z zakresu -1, 1 do zakresu 0, 255, które
są wartościami dla wyjścia PWM Arduino
trans_ard_wav.py - ten plik bierze wartości wejścia analogowego Arduino w zakresie od 0 do
1024 i konwertuje je na wartości 16-bitowego pliku .wav

Wyjaśnienie części

wave_file_writer.py

cały kod skryptu

import wave, struct, math, random, numpy

text = open("./values.txt")
string = text.read()
text.close()

sampleRate = 44100.0
duration = 100.0
frequency = 440.0
obj = wave.open('sound_writer.wav','w')
obj.setnchannels(1) # mono
obj.setsampwidth(2)
obj.setframerate(sampleRate)
audio=[]
audio = string.splitlines()
audio2 = []
for i in audio:
 audio2.append(int(i))
print(audio2)

2026/01/24 22:07 3/7 Arduino: ArdunioADCs-Hack

made by Kacper Ostrowski 3/7

for c in audio2:
 data = struct.pack('<h', c)
 obj.writeframesraw(data)
obj.close()

text = open("./values.txt")
string = text.read()
text.close()

Skrypt otwiera plik w bieżącym katalogu o nazwie values.txt1.
Odczytuje zawartość pliku i przypisuje ją do zmiennej o nazwie string2.
Zamyka plik o nazwie text3.

sampleRate = 44100.0
duration = 100.0
frequency = 440.0

Tutaj przypisuję parametry pliku WAV

obj = wave.open('sound_writer.wav','w')
obj.setnchannels(1) # mono
obj.setsampwidth(2)
obj.setframerate(sampleRate)

Skrypt otwiera plik o nazwie sound_writer.wav z uprawnieniami do zapisu w nim i przypisuje go1.
do zmiennej obj
Określona jest liczba kanałów w pliku2.
Określona jest długość pojedynczego próbki3.
„Częstotliwość próbkowania” pliku audio jest określona i przypisana do zmiennej sampleRate4.

audio=[]
audio = string.splitlines()
audio2 = []

Tworzymy listę audio1.
Wywołujemy metodę splitlines() na zmiennej string, która dzieli ją na linie i przypisuje do2.
zmiennej audio
Tworzymy listę audio23.

for i in audio:
 audio2.append(int(i))
print(audio2)

Pętla for jest wywoływana na zmiennej audio1.
Każdy element i jest konwertowany na liczbę całkowitą2.
Następnie drukujemy zmienną audio3.

for c in audio2:
 data = struct.pack('<h', c)
 obj.writeframesraw(data)
obj.close()

2026/01/24 22:07 4/7 Arduino: ArdunioADCs-Hack

made by Kacper Ostrowski 4/7

Używamy pętli for do iterowania przez listę audio21.
Używamy funkcji struct.pack() do przypisania wartości do zmiennej data, która przygotowuje2.
miejsce na zapis danych WAV
Następnie zapisujemy ramki danych do naszego pustego obiektu o nazwie data3.
Zamyka plik .wav4.

= To cały mechanizm działania tego narzędzia. Może być używane do zapisywania czegokolwiek do
pliku audio, o ile jest to w pliku values.txt i mieści się w zakresie +/- 32768 =

translate_to_pwm.py

cały kod skryptu

import numpy as np

text = open("./pwm.txt")
string = text.read()
text.close()
lines = string.splitlines()
values = []
result = []
counter = 0
for i in lines:
 values.append(float(i))
for i in values:
 counter += 1
 result.append(int(round(np.interp
 (i,[-1,1],[0,255]),0)))
print(result)

text = open("./pwm.txt")
string = text.read()
text.close()
lines = string.splitlines()
values = []
result = []
counter = 0

Skrypt otwiera plik pwm.txt i zapisuje go w zmiennej text1.
Plik przypisany do zmiennej text jest odczytywany i wynik zapisany w zmiennej string2.
Następnie plik text jest zamykany3.
Rozdzielamy zmienną string na linie4.
Tworzymy listę values5.
Tworzymy listę result6.
Tworzymy zmienną counter7.

for i in lines:
 values.append(float(i))

W tej pętli przechodzimy przez wartości w liście lines i dodajemy je do listy values, po konwersji na

2026/01/24 22:07 5/7 Arduino: ArdunioADCs-Hack

made by Kacper Ostrowski 5/7

typ float

for i in values:
 counter += 1
 result.append(int(round(np.interp
 (i,[-1,1],[0,255]),0)))
print(result)

W tej pętli przechodzimy przez dane w liście values, dodajemy 1 do zmiennej counter (która nie jest
używana), dodajemy wartość zmiennej i po jej zaokrągleniu (bez miejsc po przecinku) oraz
interpolujemy ją z zakresu -1, 1 do zakresu 0, 255, a następnie drukujemy wynik ###### to
wszystko, co powinieneś wiedzieć o tym narzędziu, może być używane do konwersji dowolnej wartości
na wartość cyklu PWM. Poniżej znajduje się mały przykład, jak obliczyć wartości sinusoidalne do pliku
pwm.txt, aby przekonwertować je na PWM

Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] na linuxie
Typ "help", "copyright", "credits" lub "license", aby uzyskać więcej
informacji.
>>> import math as mth
>>> import numpy as np
>>> range = np.arange(0,6.28,0.01)
>>> result = []
>>> for i in range:
... result.append(mth.sin(i))
...
>>> print(result)
[0.0, 0.009999833334166664, 0.01999866669333308, 0.02999550020249566,
0.03998933418663416, 0.04997916927067833, 0.059964006479444595,
0.06994284733753277, 0.0799146939691727, 0.08987854919801104,
0.09983341664682815, 0.10977830083717481, 0.11971220728891936,
0.12963414261969486, 0.1395431146442365, 0.14943813247359922,
0.15931820661424598, 0.16918234906699603, 0.17902957342582418,
0.18885889497650057, 0.19866933079506122, 0.20845989984609956,
0.21822962308086932, 0.2279775235351884, 0.23770262642713458,
0.24740395925452294, 0.2570805518921551, 0.26673143668883115,
0.27635564856411376, 0.28595222510483553, 0.29552020666133955,
0.3050586364434435, # i tak dalej ... w nieskończoność ...

= Spróbuj eksperymentować z różnymi wartościami kroków (ostatnia wartość w funkcji np.arange()),
np. 0.1; 0.5; 1. Zobacz, jak jakość fali zmieni się po interpolacji ich do zakresu +/- 32768 i zapisaniu
ich za pomocą wave_file_writer.py do pliku =

trans_ard_wav.py

import numpy as np

text = open("./input.txt")

2026/01/24 22:07 6/7 Arduino: ArdunioADCs-Hack

made by Kacper Ostrowski 6/7

string = text.read()
text.close()
lines = string.splitlines()
values = []
result = []
counter = 0;
for i in lines:
 values.append(int(i))
for i in values:
 counter += 1
 result.append(int(round(np.interp
 (i,[0,1024],[-32768,32768]),0)))
for i in result:
 print(i)

text = open("./input.txt")
string = text.read()
text.close()
lines = string.splitlines()
values = []
result = []
counter = 0;

Dobrze, teraz sprawdźmy, co robi ten fragment kodu. Pierwsza linia otwiera plik, potem standardowo
odczytujemy jego zawartość i zamykamy plik. Następnie pod zmienną „lines” przypisujemy tekst z
pliku, ale jest on podzielony na oddzielne linie. Tworzymy kilka zmiennych, które będą przydatne
później.

for i in lines:
 values.append(int(i))
for i in values:
 counter += 1
 result.append(int(round(np.interp
 (i,[0,1024],[-32768,32768]),0)))
for i in result:
 print(i)

Pierwsza pętla for odczytuje każdą wartość i konwertuje ją z typu str na int, następnie w kolejnej pętli
dodajemy 1 do zmiennej „counter” (która nie jest używana), zaokrąglamy wartości (bez miejsc po
przecinku) i interpolujemy je z zakresu 0,1024 na zakres 16-bitowego pliku audio. Ostatnia pętla for
drukuje wynik każdej wartości w nowej linii, a po tym możemy przekierować wynik do innego pliku.

Lista rzeczy do zrobienia

☒ przetłumaczenie z Pythona na cykl PWM
☒ przetłumaczenie z wejścia analogowego Arduino na plik WAV
☐ generowanie prostych fal w plikach .wav
☐ przetłumaczenie z wejścia analogowego Arduino na wykres matplotlib
☐ stworzenie GUI dla całego projektu
☐ stworzenie prostego generatora tonów .wav w oparciu o GUI/tekst

2026/01/24 22:07 7/7 Arduino: ArdunioADCs-Hack

made by Kacper Ostrowski 7/7

☐ konwerter ASCII na sygnał cyfrowy w formacie .wav i dla Arduino

Jeśli masz pomysły na ciekawe ulepszenia tego projektu, skontaktuj się ze mną lub po prostu wyślij
swoją zmianę.

Wnioski

Moim zdaniem to był interesujący projekt. Może nauczyć trochę o cyfrowym przetwarzaniu sygnałów
.wav i trochę o Arduino. Jeśli masz trochę więcej wolnego czasu i chcesz obejrzeć filmy wyjaśniające
podobne projekty do tego, odwiedź moją stronę internetową

http://www.ostrowski.net.pl

	Arduino: ArdunioADCs-Hack
	Spis treści:
	Gdzie możesz użyć tego narzędzia?
	Części tego narzędzia.
	Wyjaśnienie części
	wave_file_writer.py
	translate_to_pwm.py
	trans_ard_wav.py
	Lista rzeczy do zrobienia

	Wnioski

