
2026/01/24 22:07 1/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 1/16

Prolog: Podstawy programowania logicznego

Programy do uruchomienia Prologa

https://wiki.ostrowski.net.pl/prolog/ na bazie https://tau-prolog.org/
https://swish.swi-prolog.org/

Wstęp

Prolog (Programming in Logic) to jeden z najstarszych i najbardziej znanych języków programowania
deklaratywnego. Został stworzony w latach 70-tych XX wieku przez Alaina Colmeraura i Phillipa
Rousselota. Jest to język, w którym programista opisuje problem w postaci faktów, reguł i zapytań, a
system komputerowy samodzielnie wyciąga wnioski i szuka rozwiązań.

Zastosowania Prologa

Prolog jest szeroko stosowany w dziedzinach, które wymagają rozwiązywania problemów logicznych,
takich jak:

Sztuczna inteligencja (AI): Prolog jest używany do tworzenia systemów eksperckich, systemów
wnioskowania i robotyki, gdzie konieczne jest podejmowanie decyzji na podstawie dostępnych
danych.
Analiza i przetwarzanie języka naturalnego: Prolog znajduje zastosowanie w przetwarzaniu
języka naturalnego (NLP), ponieważ potrafi analizować i przetwarzać struktury językowe.
Bazy danych: Prolog może być używany do tworzenia baz danych i systemów wyszukiwania, w
których relacje między danymi są wyrażone za pomocą faktów i reguł.
Rozwiązywanie problemów matematycznych: Dzięki swojej logice, Prolog jest wykorzystywany
do rozwiązywania problemów związanych z teorią grafów, szukaniem ścieżek, algorytmami
planowania i innymi problemami kombinatorycznymi.

Drzewo Genealogiczne

To jest fakt w Prologu, który opisuje relację
„rodzic”. W tym przypadku:

rodzic(jozef,jacek) oznacza, że Józef
jest rodzicem Jacka.

Fakty w Prologu są podstawowymi stwierdzeniami,
które są uznawane za prawdziwe. Każdy fakt

https://wiki.ostrowski.net.pl/prolog/
https://tau-prolog.org/
https://swish.swi-prolog.org/

2026/01/24 22:07 2/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 2/16

składa się z predykatu (np. rodzic) i argumentów
(np. jozef i jacek), które stanowią dane związane z
tym predykatem.

W Prologu \+ oznacza negację. Jest to operator,
który sprawdza, czy wyrażenie jest fałszywe.
Możesz to rozumieć jako zapytanie „Czy to nie jest
prawda?”. Operator \+ działa jak negacja logiczna
w innych językach programowania.

Przykład użycia negacji:

\+ rodzic(jozef, jacek).

To zapytanie sprawdza, czy Józef nie jest rodzicem
Jacka. Jeśli fakt rodzic(jozef, jacek) nie jest
zapisany w bazie danych, wynik będzie prawda
(ponieważ negacja fałszywego stwierdzenia daje
prawdę). Jeśli taki fakt istnieje, wynik będzie fałsz.

Negacja w Prologu działa w następujący sposób:

\+ A będzie prawdą, jeśli A jest fałszywe.
\+ A będzie fałszem, jeśli A jest prawdą.

Przykłady:

Jeśli mamy fakt rodzic(jozef, jacek),
zapytanie \+ rodzic(jozef, jacek).
zwróci fałsz.
Jeśli mamy zapytanie \+
rodzic(krzysztof, jacek). (które nie
jest zapisane jako fakt w bazie), to zwróci
prawdę.

Predykaty i reguły:

% fakty
małżeństwo(jacek,iza).
małżeństwo(andrzej,anna).
małżeństwo(jan,krystyna).
małżeństwo(jozef,halina).
małżeństwo(cezary,cecylia).
małżeństwo(henryk,hanna).
małżeństwo(darek,dorota).

% dzieci(jacka i iza)
rodzic(jacek,krzys).
rodzic(iza,krzys).
rodzic(jacek,ola).
rodzic(iza,ola).
rodzic(iza,julek).

%dzieci anrzej i anna
rodzic(andrzej,jas).
rodzic(anna,jas).

% dzieci jana i krystyny
rodzic(krystyna,iza).
rodzic(krystyna,jagoda).
rodzic(krystyna,andrzej).
rodzic(krystyna,jurek).
rodzic(jan,iza).
rodzic(jan,jagoda).

rodzic(jan,andrzej).
rodzic(jan,jurek).

% dzieci cezary i cecylia
rodzic(cecylia,halina).
rodzic(cezary,halina).

% dzieci dorota i darek
rodzic(dorota,danuta).
rodzic(dorota,nadzieja).
rodzic(darek,danuta).
rodzic(jacek,nadzieja).

% dzieci jozefa i haliny
rodzic(halina,jacek).

2026/01/24 22:07 3/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 3/16

rodzic(halina,hanna).
rodzic(halina,piotrek).

rodzic(jozef,jacek).
rodzic(jozef,hanna).
rodzic(jozef,piotrek).

rodzic(adam,julek).

kobieta(iza).
kobieta(jagoda).
kobieta(ola).
kobieta(krystyna).
kobieta(halina).
kobieta(hanna).
kobieta(cecylia).
kobieta(dorota).
kobieta(anna).
kobieta(nadzieja).

%reguły

mężczyzna(X) :- \+
kobieta(X).
ojciec(X,Y) :- rodzic(X,Y),
mężczyzna(X).
matka(X,Y):- rodzic(X,Y),
kobieta(X).
dziecko(X,Y) :- rodzic(Y,X).

wnuk(X,Y) :- dziecko(D,Y),
dziecko(X,D).

rodzeństwo_n(X,Y) :-
 matka(M,Y),
 matka(M,X),
 ojciec(O,Y),
 ojciec(O,X), X \= Y.

rodzeństwo_p(X,Y) :-
 matka(M,Y),
 matka(M,X),
 ojciec(O1,Y),
 ojciec(O2,X),
 X \= Y,
 O1 \= O2.

rodzeństwo_p(X,Y) :-
 matka(M1,Y),
 matka(M2,X),
 ojciec(O,Y),

2026/01/24 22:07 4/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 4/16

 ojciec(O,X),
 X \= Y,
 M1 \= M2.

rodzeństwo(X,Y) :-
 rodzeństwo_n(X,Y);
 rodzeństwo_p(X,Y).

siostra(X,Y) :-
rodzeństwo(X,Y), kobieta(X).
brat(X,Y) :-
rodzeńśtwo(X,Y),
mężczyzna(X).

mąż(X,Y) :-
 mężczyzna(Y),
 małżeństwo(X,Y),
 kobieta(Y).

żona(X,Y) :-
 kobieta(X),
 małżeństwo(X,Y),
 mężczyzna(Y).

Przykładowe zapytania:

% Zapytania do modelu Prolog
% Komentarze wyjaśniające, co każde zapytanie robi

% Pytanie 1: Sprawdzamy, czy Jacek i Iza są małżeństwem.
% Zapytanie sprawdza fakt w bazie danych
małżeństwo(jacek, iza). % Oczekiwana odpowiedź: tak (True)

% Pytanie 2: Sprawdzamy, kto jest ojcem Krzysia.
% Zapytanie testuje regułę "ojciec"
ojciec(X, krzys). % Oczekiwana odpowiedź: X = jacek

% Pytanie 3: Sprawdzamy, kto jest matką Oli.
% Zapytanie testuje regułę "matka"
matka(X, ola). % Oczekiwana odpowiedź: X = iza

% Pytanie 4: Kto jest dzieckiem Jacka?
% Zapytanie testuje regułę "dziecko"
dziecko(X, jacek). % Oczekiwana odpowiedź: X = krzys ; X = ola ; X =
nadzieja

% Pytanie 5: Sprawdzamy, czy Krzysiu i Ola to rodzeństwo.
% Zapytanie testuje regułę "rodzeństwo_n" (rodzeństwo na podstawie tych
samych rodziców)
rodzeństwo_n(krzys, ola). % Oczekiwana odpowiedź: tak (True)

2026/01/24 22:07 5/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 5/16

% Pytanie 6: Kto jest wnukiem Jana?
% Zapytanie testuje regułę "wnuk"
wnuk(X, jan). % Oczekiwana odpowiedź: X = iza ; X = jagoda ; X = andrzej ;
X = jurek

% Pytanie 7: Sprawdzamy, czy Iza i Jagoda są siostrami.
% Zapytanie testuje regułę "siostra"
siostra(iza, jagoda). % Oczekiwana odpowiedź: tak (True)

% Pytanie 8: Kto jest mężem Anny?
% Zapytanie testuje regułę "mąż"
mąż(X, anna). % Oczekiwana odpowiedź: X = andrzej

% Pytanie 9: Kto jest żoną Jana?
% Zapytanie testuje regułę "żona"
żona(X, jan). % Oczekiwana odpowiedź: X = krystyna

% Pytanie 10: Kto jest bratem Izy?
% Zapytanie testuje regułę "brat"
brat(X, iza). % Oczekiwana odpowiedź: X = andrzej ; X = jurek

% Pytanie 11: Kto jest ojcem Jasem?
% Zapytanie testuje regułę "ojciec"
ojciec(X, jas). % Oczekiwana odpowiedź: X = andrzej

% Pytanie 12: Sprawdzamy, czy Jacek i Halina są małżeństwem.
% Zapytanie testuje fakt w bazie danych
małżeństwo(jacek, halina). % Oczekiwana odpowiedź: nie (False)

% Pytanie 13: Kto jest ojcem Jagody?
% Zapytanie testuje regułę "ojciec"
ojciec(X, jagoda). % Oczekiwana odpowiedź: X = jan

% Pytanie 14: Kto jest matką Krystyny?
% Zapytanie testuje regułę "matka"
matka(X, krystyna). % Oczekiwana odpowiedź: brak odpowiedzi, ponieważ nie
mamy takiego faktu

% Pytanie 15: Kto jest rodzeństwem Haliny?
% Zapytanie testuje regułę "rodzeństwo"
rodzeństwo(X, halina). % Oczekiwana odpowiedź: X = cezary ; X = cecylia

% Pytanie 16: Kto jest siostrą Izy?
% Zapytanie testuje regułę "siostra"
siostra(X, iza). % Oczekiwana odpowiedź: X = jagoda

2026/01/24 22:07 6/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 6/16

Zagadka kryminalna

W Prologu \= oznacza nierówność.
To jest operator porównania, który sprawdza, czy
dwie wartości (lub zmienne) są różne.
W tym przypadku:
X \= O oznacza, że X jest różne od O.

W Prologu _ jest tzw. anonimową zmienną.
Oznacza to, że nie interesuje nas wartość tej
zmiennej i nie będziemy jej używać w dalszej
części programu. Prolog przyjmuje ją, ale nie
przypisuje jej żadnej konkretnej wartości.

W Prologu możesz używać _, gdy nie zależy ci na
wynikach tej zmiennej, np. w przypadku:

motyw(X, zazdrość) :-
 kobieta(X),
 zamordowana(O),
 romans(O, M),
 romans(X, M),
 X \= O.

W przypadku powyższym, zmienna M w regule
romans(O, M) jest używana, ponieważ sprawdzamy
romans między O a M, ale jeśli w innym przypadku
nie chcemy używać jakiejś zmiennej, zapisujemy ją
jako _:

romans(_, _). % przykładowy zapis,
który oznacza, że nie zależy nam na
wartościach

To mówi Prologowi: „Przyjmij wszystkie możliwe
wartości, ale nie będziemy ich używać ani
sprawdzać”.

Zatem _ pełni rolę zmiennej, której wartości nie
będziemy wykorzystywać w dalszej logice.

Predykaty i reguły:

% Fakty
osoba(tomasz, 55, stolarz).
osoba(krzysztof, 25,
piłkarz).
osoba(krzysztof, 25,
rzeźnik).
osoba(piotr, 25, złodziej).
osoba(anna, 39, chirurg).

romans(anna, piotr).
romans(anna, krzysztof).
romans(agnieszka, piotr).
romans(agnieszka, tomasz).

zamordowana(agnieszka).
prawdopodobnie_zamordowana(a
gnieszka, kij_golfowy).
prawdopodobnie_zamordowana(a
gnieszka, łom).

pobrudzony(tomasz, krew).
pobrudzony(agnieszka, krew).
pobrudzony(krzysztof, krew).
pobrudzony(krzysztof,
błoto).
pobrudzony(piotr, błoto).
pobrudzony(anna, krew).

posiada(tomasz,
sztuczna_noga).
posiada(piotr, rewolwer).

podobne_obrażenia(sztuczna_n
oga, kij_golfowy).
podobne_obrażenia(noga_od_st
ołu, kij_golfowy).
podobne_obrażenia(łom,

2026/01/24 22:07 7/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 7/16

kij_golfowy).
podobne_obrażenia(nożyczki,
nóż).
podobne_obrażenia(but_piłkar
ski, kij_golfowy).

% Fakty o płci
mężczyzna(piotr).
mężczyzna(krzysztof).
mężczyzna(tomasz).

kobieta(anna).
kobieta(agnieszka).

% Reguły
posiada(X, but_piłkarski) :-
osoba(X, _, piłkarz).
posiada(X, piłka) :-
osoba(X, _, piłkarz).
posiada(X, nóż) :- osoba(X,
_, rzeźnik).
posiada(X, nóż) :- osoba(X,
_, chirurg).
posiada(X, nożyczki) :-
osoba(X, _, chirurg).
posiada(X, łom) :- osoba(X,
_, złodziej).
posiada(X, noga_od_stołu) :-
osoba(X, _, stolarz).

posiada(X,
narzędzie_zbrodni) :-
 posiada(X, rewolwer);
 posiada(X, nóż);
 posiada(X, kij_golfowy);
 posiada(X, nożyczki);
 posiada(X,
but_piłkarski);
 posiada(X,
noga_od_stołu);
 posiada(X,
sztuczna_noga);
 posiada(X, łom).

podejrzany(X) :-
 zamordowana(O),
prawdopodobnie_zamordowana(O
, Y),
 podobne_obrażenia(N, Y),
 posiada(X, N).

2026/01/24 22:07 8/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 8/16

motyw(X, zazdrość) :-
 mężczyzna(X),
 zamordowana(O),
 romans(O, X).

motyw(X, zazdrość) :-
 kobieta(X),
 zamordowana(O),
 romans(O, M),
 romans(X, M),
 X \= O.

motyw(X, pieniądze) :-
 mężczyzna(X),
 osoba(X, _, złodziej).

morderca(X) :-
 podejrzany(X),
 zamordowana(O),
 motyw(X, _),
 pobrudzony(O, S),
 pobrudzony(X, S).

motyw_mordercy(M) :-
 morderca(X),
 motyw(X, M).

Odpowiedz na pytania:

Kto posiada narzędzia zbrodni ?
posiada(X, narzędzie_zbrodni).

Kto jest podejrzany o morderstwo?
podejrzany(X).

Jakie motywy zbrodni miały poszczególne osoby?
motyw(X, M).

Kto jest mordercą?
morderca(X).

Jaki motyw miał morderca?
motyw_mordercy(M).

Struktury listowe w języku Prolog

Struktury listowe w języku Prolog stanowią podstawowy mechanizm reprezentacji zbiorów danych.
Listy są strukturami rekurencyjnymi, co umożliwia ich elastyczne przetwarzanie.

2026/01/24 22:07 9/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 9/16

Definicja listy

Lista w Prologu to uporządkowany zbiór elementów, zapisany w nawiasach kwadratowych i oddzielony
przecinkami:

[el1, el2, el3]

Lista może być również pusta:

[]

Operacje na listach

Dostęp do elementów

Lista może być rozbita na głowę (pierwszy element) i ogon (reszta listy):

[H|T]

H – głowa listy (head)1.
T – ogon listy (tail)2.

Przykład:

?- [H|T] = [1,2,3].
H = 1,
T = [2,3].

Sprawdzanie przynależności

Operator `member/2` sprawdza, czy element należy do listy:

member(X, [a,b,c]).

Łączenie list

Operator `append/3` służy do łączenia dwóch list:

append([1,2], [3,4], Result).
Result = [1,2,3,4].

2026/01/24 22:07 10/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 10/16

Długość listy

Predykat `length/2` służy do określania długości listy:

length([a,b,c], N).
N = 3.

Rekurencja na listach

Ze względu na rekurencyjny charakter list, większość algorytmów operujących na listach korzysta z
rekurencji.

Przykład sumowania elementów listy:

sum([], 0).
sum([H|T], S) :-
 sum(T, S1),
 S is H + S1.

Lista jako struktura danych

Listy mogą zawierać zmienne, inne listy, a także złożone struktury:

[[a,b], [c,d]]

Mogą także być niedomknięte (ang. open-ended lists):

[1,2|X]

Jest to przydatne przy konstruowaniu dynamicznych list.

Wypisywanie elementów listy

Predykat wypisujący każdy element listy w osobnej linii:

print_list([]).
print_list([H|T]) :-
 write(H), nl,
 print_list(T).

Przykład użycia:

?- print_list([apple, banana, cherry]).

http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html

2026/01/24 22:07 11/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 11/16

apple
banana
cherry

Wyodrębnianie pierwszego elementu listy

Aby uzyskać pierwszy element listy, możemy użyć dopasowania wzorców (pattern matching) z
użyciem operatora |.

Przykładowy predykat:

first_element([H|_], H).

[H|_] – dopasowuje listę, gdzie `H` to pierwszy element, a `_` ignoruje resztę.1.
H – zmienna zwracająca pierwszy element.2.

Przykład użycia:

?- first_element([a, b, c], X).
X = a.

Wyodrębnianie drugiego elementu listy

Aby uzyskać drugi element listy, możemy użyć dopasowania wzorców, omijając pierwszy element.

Predykat:

second_element([_, Second|_], Second).

[_, Second|_] – ignoruje pierwszy element (`_`), przypisuje drugi do zmiennej `Second`, a1.
resztę ignoruje.

Przykład użycia:

?- second_element([x, y, z], X).
X = y.

Wyodrębnianie ostatniego elementu listy

Aby uzyskać ostatni element listy, możemy wykorzystać rekurencyjne dopasowanie wzorców.

Predykat:

last_element([X], X).
last_element([_|T], X) :-
 last_element(T, X).

2026/01/24 22:07 12/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 12/16

[X] – dopasowanie jednoelementowej listy (ostatni element).1.
[_|T] – rekurencyjne przeszukiwanie ogona listy, aż zostanie tylko jeden element.2.

Przykład użycia:

?- last_element([a, b, c, d], X).
X = d.

Wywołania rekurencyjne:

Znajdowanie elementu w liście

Aby sprawdzić, czy dany element znajduje się w liście, można skorzystać z wbudowanego predykatu
`member/2`, albo zdefiniować własną wersję.

Wersja oparta na rekurencji:

in_list([X|_], X).
in_list([_|T], X) :-
 in_list(T, X).

[X|_] – dopasowanie, jeśli pierwszy element listy to szukany element.1.
[_|T] – rekurencyjne przeszukiwanie ogona listy.2.

Przykład użycia:

?- in_list([1, 2, 3, 4], 3).
true.

?- in_list([a, b, c], d).
false.

Alternatywa: użycie wbudowanego predykatu `member/2`:

?- member(3, [1,2,3,4]).

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=notatki%3Aprolog&media=notatki:pasted:20250527-131822.png
http://pauillac.inria.fr/~deransar/prolog/bips.html

2026/01/24 22:07 13/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 13/16

true.

Sprawdzanie, czy lista jest uporządkowana rosnąco

Predykat sprawdzający, czy elementy listy numerycznej rosną lub są równe (nie maleją):

sorted_asc([]).
sorted_asc([_]).
sorted_asc([X, Y | T]) :-
 X =< Y,
 sorted_asc([Y | T]).

[] i [_] — lista pusta lub jednoelementowa jest uporządkowana.1.
[X, Y | T] — sprawdzamy, czy pierwszy element jest mniejszy lub równy drugiemu, a następnie2.
rekurencyjnie resztę listy.

Przykład użycia:

?- sorted_asc([1, 2, 2, 4, 5]).
true.

?- sorted_asc([1, 3, 2, 4]).
false.

Wstawianie elementu do listy uporządkowanej rosnąco

Predykat, który wstawia element `X` do posortowanej listy rosnącej `List`, zwracając nową listę
`Result`, również uporządkowaną rosnąco:

insert_sorted(X, [], [X]).
insert_sorted(X, [H|T], [X,H|T]) :-
 X =< H.
insert_sorted(X, [H|T], [H|R]) :-
 X > H,
 insert_sorted(X, T, R).

Jeśli lista jest pusta, nowa lista to `[X]`.1.
Jeśli `X` jest mniejsze lub równe pierwszemu elementowi `H`, wstawiamy `X` przed `H`.2.
W przeciwnym razie rekurencyjnie wstawiamy `X` w ogon listy.3.

Przykład użycia:

?- insert_sorted(3, [1, 2, 4, 5], Result).
Result = [1, 2, 3, 4, 5].

http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html

2026/01/24 22:07 14/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 14/16

Sortowanie listy metodą wstawiania

Predykat sortujący listę numeryczną rosnąco za pomocą algorytmu sortowania przez wstawianie
(*insertion sort*).

Definicja:

insert_sorted(X, [], [X]).
insert_sorted(X, [H|T], [X,H|T]) :-
 X =< H.
insert_sorted(X, [H|T], [H|R]) :-
 X > H,
 insert_sorted(X, T, R).

insertion_sort([], []).
insertion_sort([H|T], Sorted) :-
 insertion_sort(T, SortedT),
 insert_sorted(H, SortedT, Sorted).

Opis działania:

`insert_sorted/3` – wstawia element w odpowiednie miejsce w posortowanej liście.1.
`insertion_sort/2` – rekurencyjnie sortuje ogon listy i wstawia bieżący element.2.

Przykład użycia:

?- insertion_sort([4, 1, 3, 2], Sorted).
Sorted = [1, 2, 3, 4].

Obliczanie długości listy

Predykat `length_list/2` oblicza długość listy – czyli liczbę jej elementów – za pomocą rekurencji.

Definicja:

length_list([], 0).
length_list([_|T], N) :-
 length_list(T, N1),
 N is N1 + 1.

[] – pusta lista ma długość 0.1.
[_|T] – ignorujemy pierwszy element i rekurencyjnie liczymy długość ogona listy, zwiększając2.
wynik o 1.

Przykład użycia:

?- length_list([a, b, c, d], N).
N = 4.

http://pauillac.inria.fr/~deransar/prolog/bips.html

2026/01/24 22:07 15/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 15/16

Alternatywnie, można użyć wbudowanego predykatu `length/2`:

?- length([a, b, c, d], N).
N = 4.

Sumowanie elementów listy

Predykat `sum_list/2` oblicza sumę wszystkich elementów numerycznych znajdujących się w liście.

Definicja:

sum_list([], 0).
sum_list([H|T], Sum) :-
 sum_list(T, Rest),
 Sum is H + Rest.

[] – suma pustej listy to 0.1.
[H|T] – dodajemy bieżący element `H` do sumy pozostałych elementów `T`.2.

Przykład użycia:

?- sum_list([1, 2, 3, 4], S).
S = 10.

Można również użyć wbudowanego predykatu `sum_list/2`, który działa identycznie:

?- sum_list([1,2,3,4], S).
S = 10.

Średnia arytmetyczna elementów listy

Predykat `average_list/2` oblicza średnią arytmetyczną wszystkich elementów numerycznych w liście.

Wymaga dwóch pomocniczych predykatów:

`sum_list/2` – oblicza sumę elementów,
`length_list/2` – oblicza długość listy.

Definicja:

sum_list([], 0).
sum_list([H|T], Sum) :-
 sum_list(T, Rest),
 Sum is H + Rest.

length_list([], 0).
length_list([_|T], N) :-
 length_list(T, N1),

http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html

2026/01/24 22:07 16/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 16/16

 N is N1 + 1.

average_list(List, Avg) :-
 sum_list(List, Sum),
 length_list(List, Length),
 Length > 0,
 Avg is Sum / Length.

Opis działania:

Najpierw obliczamy sumę elementów listy.1.
Następnie obliczamy jej długość.2.
Obliczamy średnią jako `Sum / Length`.3.

Przykład użycia:

?- average_list([2, 4, 6, 8], A).
A = 5.0.

Uwaga: predykat sprawdza, czy długość listy jest większa od zera, aby uniknąć dzielenia przez zero.

http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html

	Prolog: Podstawy programowania logicznego
	Programy do uruchomienia Prologa

	Wstęp
	Zastosowania Prologa
	Drzewo Genealogiczne
	Zagadka kryminalna
	Struktury listowe w języku Prolog
	Definicja listy
	Operacje na listach

	Dostęp do elementów
	Sprawdzanie przynależności
	Łączenie list
	Długość listy
	Rekurencja na listach
	Lista jako struktura danych
	Wypisywanie elementów listy
	Wyodrębnianie pierwszego elementu listy
	Wyodrębnianie drugiego elementu listy
	Wyodrębnianie ostatniego elementu listy
	Znajdowanie elementu w liście
	Sprawdzanie, czy lista jest uporządkowana rosnąco
	Wstawianie elementu do listy uporządkowanej rosnąco
	Sortowanie listy metodą wstawiania
	Obliczanie długości listy
	Sumowanie elementów listy
	Średnia arytmetyczna elementów listy

