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Prolog: Podstawy programowania logicznego

Programy do uruchomienia Prologa

https://wiki.ostrowski.net.pl/prolog/ na bazie https://tau-prolog.org/
https://swish.swi-prolog.org/

Wstęp

Prolog (Programming in Logic) to jeden z najstarszych i najbardziej znanych języków programowania
deklaratywnego. Został stworzony w latach 70-tych XX wieku przez Alaina Colmeraura i Phillipa
Rousselota. Jest to język, w którym programista opisuje problem w postaci faktów, reguł i zapytań, a
system komputerowy samodzielnie wyciąga wnioski i szuka rozwiązań.

Zastosowania Prologa

Prolog jest szeroko stosowany w dziedzinach, które wymagają rozwiązywania problemów logicznych,
takich jak:

Sztuczna inteligencja (AI): Prolog jest używany do tworzenia systemów eksperckich, systemów
wnioskowania i robotyki, gdzie konieczne jest podejmowanie decyzji na podstawie dostępnych
danych.
Analiza i przetwarzanie języka naturalnego: Prolog znajduje zastosowanie w przetwarzaniu
języka naturalnego (NLP), ponieważ potrafi analizować i przetwarzać struktury językowe.
Bazy danych: Prolog może być używany do tworzenia baz danych i systemów wyszukiwania, w
których relacje między danymi są wyrażone za pomocą faktów i reguł.
Rozwiązywanie problemów matematycznych: Dzięki swojej logice, Prolog jest wykorzystywany
do rozwiązywania problemów związanych z teorią grafów, szukaniem ścieżek, algorytmami
planowania i innymi problemami kombinatorycznymi.

Drzewo Genealogiczne

To jest fakt w Prologu, który opisuje relację
„rodzic”. W tym przypadku:

rodzic(jozef,jacek) oznacza, że Józef
jest rodzicem Jacka.

Fakty w Prologu są podstawowymi stwierdzeniami,
które są uznawane za prawdziwe. Każdy fakt

https://wiki.ostrowski.net.pl/prolog/
https://tau-prolog.org/
https://swish.swi-prolog.org/
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składa się z predykatu (np. rodzic) i argumentów
(np. jozef i jacek), które stanowią dane związane z
tym predykatem.

W Prologu \+ oznacza negację. Jest to operator,
który sprawdza, czy wyrażenie jest fałszywe.
Możesz to rozumieć jako zapytanie „Czy to nie jest
prawda?”. Operator \+ działa jak negacja logiczna
w innych językach programowania.

Przykład użycia negacji:

\+ rodzic(jozef, jacek).

To zapytanie sprawdza, czy Józef nie jest rodzicem
Jacka. Jeśli fakt rodzic(jozef, jacek) nie jest
zapisany w bazie danych, wynik będzie prawda
(ponieważ negacja fałszywego stwierdzenia daje
prawdę). Jeśli taki fakt istnieje, wynik będzie fałsz.

Negacja w Prologu działa w następujący sposób:

\+ A będzie prawdą, jeśli A jest fałszywe.
\+ A będzie fałszem, jeśli A jest prawdą.

Przykłady:

Jeśli mamy fakt rodzic(jozef, jacek),
zapytanie \+ rodzic(jozef, jacek).
zwróci fałsz.
Jeśli mamy zapytanie \+
rodzic(krzysztof, jacek). (które nie
jest zapisane jako fakt w bazie), to zwróci
prawdę.

Predykaty i reguły:

% fakty
małżeństwo(jacek,iza).
małżeństwo(andrzej,anna).
małżeństwo(jan,krystyna).
małżeństwo(jozef,halina).
małżeństwo(cezary,cecylia).
małżeństwo(henryk,hanna).
małżeństwo(darek,dorota).
 
% dzieci(jacka i iza)
rodzic(jacek,krzys).
rodzic(iza,krzys).
rodzic(jacek,ola).
rodzic(iza,ola).
rodzic(iza,julek).
 
%dzieci anrzej i anna
rodzic(andrzej,jas).
rodzic(anna,jas).
 
% dzieci jana i krystyny
rodzic(krystyna,iza).
rodzic(krystyna,jagoda).
rodzic(krystyna,andrzej).
rodzic(krystyna,jurek).
rodzic(jan,iza).
rodzic(jan,jagoda).
 
 
rodzic(jan,andrzej).
rodzic(jan,jurek).
 
% dzieci cezary i cecylia
rodzic(cecylia,halina).
rodzic(cezary,halina).
 
% dzieci dorota i darek
rodzic(dorota,danuta).
rodzic(dorota,nadzieja).
rodzic(darek,danuta).
rodzic(jacek,nadzieja).
 
% dzieci jozefa i haliny
rodzic(halina,jacek).
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rodzic(halina,hanna).
rodzic(halina,piotrek).
 
rodzic(jozef,jacek).
rodzic(jozef,hanna).
rodzic(jozef,piotrek).
 
rodzic(adam,julek).
 
kobieta(iza).
kobieta(jagoda).
kobieta(ola).
kobieta(krystyna).
kobieta(halina).
kobieta(hanna).
kobieta(cecylia).
kobieta(dorota).
kobieta(anna).
kobieta(nadzieja).
 
%reguły
 
mężczyzna(X) :- \+
kobieta(X).
ojciec(X,Y) :- rodzic(X,Y),
mężczyzna(X).
matka(X,Y):- rodzic(X,Y),
kobieta(X).
dziecko(X,Y) :- rodzic(Y,X).
 
wnuk(X,Y) :- dziecko(D,Y),
dziecko(X,D).
 
rodzeństwo_n(X,Y) :-
  matka(M,Y),
  matka(M,X),
  ojciec(O,Y),
  ojciec(O,X), X \= Y.
 
rodzeństwo_p(X,Y) :-
  matka(M,Y),
  matka(M,X),
  ojciec(O1,Y),
  ojciec(O2,X),
  X \= Y,
  O1 \= O2.
 
rodzeństwo_p(X,Y) :-
  matka(M1,Y),
  matka(M2,X),
  ojciec(O,Y),
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  ojciec(O,X),
  X \= Y,
  M1 \= M2.
 
rodzeństwo(X,Y) :-
  rodzeństwo_n(X,Y);
  rodzeństwo_p(X,Y).
 
siostra(X,Y) :-
rodzeństwo(X,Y), kobieta(X).
brat(X,Y) :-
rodzeńśtwo(X,Y),
mężczyzna(X).
 
mąż(X,Y) :-
  mężczyzna(Y),
  małżeństwo(X,Y),
  kobieta(Y).
 
żona(X,Y) :-
  kobieta(X),
  małżeństwo(X,Y),
  mężczyzna(Y).

Przykładowe zapytania:

% Zapytania do modelu Prolog
% Komentarze wyjaśniające, co każde zapytanie robi
 
% Pytanie 1: Sprawdzamy, czy Jacek i Iza są małżeństwem.
% Zapytanie sprawdza fakt w bazie danych
małżeństwo(jacek, iza).  % Oczekiwana odpowiedź: tak (True)
 
% Pytanie 2: Sprawdzamy, kto jest ojcem Krzysia.
% Zapytanie testuje regułę "ojciec"
ojciec(X, krzys).  % Oczekiwana odpowiedź: X = jacek
 
% Pytanie 3: Sprawdzamy, kto jest matką Oli.
% Zapytanie testuje regułę "matka"
matka(X, ola).  % Oczekiwana odpowiedź: X = iza
 
% Pytanie 4: Kto jest dzieckiem Jacka?
% Zapytanie testuje regułę "dziecko"
dziecko(X, jacek).  % Oczekiwana odpowiedź: X = krzys ; X = ola ; X =
nadzieja
 
% Pytanie 5: Sprawdzamy, czy Krzysiu i Ola to rodzeństwo.
% Zapytanie testuje regułę "rodzeństwo_n" (rodzeństwo na podstawie tych
samych rodziców)
rodzeństwo_n(krzys, ola).  % Oczekiwana odpowiedź: tak (True)
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% Pytanie 6: Kto jest wnukiem Jana?
% Zapytanie testuje regułę "wnuk"
wnuk(X, jan).  % Oczekiwana odpowiedź: X = iza ; X = jagoda ; X = andrzej ;
X = jurek
 
% Pytanie 7: Sprawdzamy, czy Iza i Jagoda są siostrami.
% Zapytanie testuje regułę "siostra"
siostra(iza, jagoda).  % Oczekiwana odpowiedź: tak (True)
 
% Pytanie 8: Kto jest mężem Anny?
% Zapytanie testuje regułę "mąż"
mąż(X, anna).  % Oczekiwana odpowiedź: X = andrzej
 
% Pytanie 9: Kto jest żoną Jana?
% Zapytanie testuje regułę "żona"
żona(X, jan).  % Oczekiwana odpowiedź: X = krystyna
 
% Pytanie 10: Kto jest bratem Izy?
% Zapytanie testuje regułę "brat"
brat(X, iza).  % Oczekiwana odpowiedź: X = andrzej ; X = jurek
 
% Pytanie 11: Kto jest ojcem Jasem?
% Zapytanie testuje regułę "ojciec"
ojciec(X, jas).  % Oczekiwana odpowiedź: X = andrzej
 
% Pytanie 12: Sprawdzamy, czy Jacek i Halina są małżeństwem.
% Zapytanie testuje fakt w bazie danych
małżeństwo(jacek, halina).  % Oczekiwana odpowiedź: nie (False)
 
% Pytanie 13: Kto jest ojcem Jagody?
% Zapytanie testuje regułę "ojciec"
ojciec(X, jagoda).  % Oczekiwana odpowiedź: X = jan
 
% Pytanie 14: Kto jest matką Krystyny?
% Zapytanie testuje regułę "matka"
matka(X, krystyna).  % Oczekiwana odpowiedź: brak odpowiedzi, ponieważ nie
mamy takiego faktu
 
% Pytanie 15: Kto jest rodzeństwem Haliny?
% Zapytanie testuje regułę "rodzeństwo"
rodzeństwo(X, halina).  % Oczekiwana odpowiedź: X = cezary ; X = cecylia
 
% Pytanie 16: Kto jest siostrą Izy?
% Zapytanie testuje regułę "siostra"
siostra(X, iza).  % Oczekiwana odpowiedź: X = jagoda
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Zagadka kryminalna

W Prologu \= oznacza nierówność.
To jest operator porównania, który sprawdza, czy
dwie wartości (lub zmienne) są różne.
W tym przypadku:
X \= O oznacza, że X jest różne od O.

W Prologu _ jest tzw. anonimową zmienną.
Oznacza to, że nie interesuje nas wartość tej
zmiennej i nie będziemy jej używać w dalszej
części programu. Prolog przyjmuje ją, ale nie
przypisuje jej żadnej konkretnej wartości.

W Prologu możesz używać _, gdy nie zależy ci na
wynikach tej zmiennej, np. w przypadku:

motyw(X, zazdrość) :-
    kobieta(X),
    zamordowana(O),
    romans(O, M),
    romans(X, M),
    X \= O.

W przypadku powyższym, zmienna M w regule
romans(O, M) jest używana, ponieważ sprawdzamy
romans między O a M, ale jeśli w innym przypadku
nie chcemy używać jakiejś zmiennej, zapisujemy ją
jako _:

romans(_, _). % przykładowy zapis,
który oznacza, że nie zależy nam na
wartościach

To mówi Prologowi: „Przyjmij wszystkie możliwe
wartości, ale nie będziemy ich używać ani
sprawdzać”.

Zatem _ pełni rolę zmiennej, której wartości nie
będziemy wykorzystywać w dalszej logice.

Predykaty i reguły:

% Fakty
osoba(tomasz, 55, stolarz).
osoba(krzysztof, 25,
piłkarz).
osoba(krzysztof, 25,
rzeźnik).
osoba(piotr, 25, złodziej).
osoba(anna, 39, chirurg).
 
romans(anna, piotr).
romans(anna, krzysztof).
romans(agnieszka, piotr).
romans(agnieszka, tomasz).
 
zamordowana(agnieszka).
prawdopodobnie_zamordowana(a
gnieszka, kij_golfowy).
prawdopodobnie_zamordowana(a
gnieszka, łom).
 
pobrudzony(tomasz, krew).
pobrudzony(agnieszka, krew).
pobrudzony(krzysztof, krew).
pobrudzony(krzysztof,
błoto).
pobrudzony(piotr, błoto).
pobrudzony(anna, krew).
 
posiada(tomasz,
sztuczna_noga).
posiada(piotr, rewolwer).
 
podobne_obrażenia(sztuczna_n
oga, kij_golfowy).
podobne_obrażenia(noga_od_st
ołu, kij_golfowy).
podobne_obrażenia(łom,
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kij_golfowy).
podobne_obrażenia(nożyczki,
nóż).
podobne_obrażenia(but_piłkar
ski, kij_golfowy).
 
% Fakty o płci
mężczyzna(piotr).
mężczyzna(krzysztof).
mężczyzna(tomasz).
 
kobieta(anna).
kobieta(agnieszka).
 
% Reguły
posiada(X, but_piłkarski) :-
osoba(X, _, piłkarz).
posiada(X, piłka) :-
osoba(X, _, piłkarz).
posiada(X, nóż) :- osoba(X,
_, rzeźnik).
posiada(X, nóż) :- osoba(X,
_, chirurg).
posiada(X, nożyczki) :-
osoba(X, _, chirurg).
posiada(X, łom) :- osoba(X,
_, złodziej).
posiada(X, noga_od_stołu) :-
osoba(X, _, stolarz).
 
posiada(X,
narzędzie_zbrodni) :-
    posiada(X, rewolwer);
    posiada(X, nóż);
    posiada(X, kij_golfowy);
    posiada(X, nożyczki);
    posiada(X,
but_piłkarski);
    posiada(X,
noga_od_stołu);
    posiada(X,
sztuczna_noga);
    posiada(X, łom).
 
podejrzany(X) :-
    zamordowana(O),
prawdopodobnie_zamordowana(O
, Y),
    podobne_obrażenia(N, Y),
    posiada(X, N).
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motyw(X, zazdrość) :-
    mężczyzna(X),
    zamordowana(O),
    romans(O, X).
 
motyw(X, zazdrość) :-
    kobieta(X),
    zamordowana(O),
    romans(O, M),
    romans(X, M),
    X \= O.
 
motyw(X, pieniądze) :-
    mężczyzna(X),
    osoba(X, _, złodziej).
 
morderca(X) :-
    podejrzany(X),
    zamordowana(O),
    motyw(X, _),
    pobrudzony(O, S),
    pobrudzony(X, S).
 
motyw_mordercy(M) :-
    morderca(X),
    motyw(X, M).

Odpowiedz na pytania:

Kto posiada narzędzia zbrodni ?
posiada(X, narzędzie_zbrodni).

Kto jest podejrzany o morderstwo?
podejrzany(X).

Jakie motywy zbrodni miały poszczególne osoby?
motyw(X, M).

Kto jest mordercą?
morderca(X).

Jaki motyw miał morderca?
motyw_mordercy(M).

Struktury listowe w języku Prolog

Struktury listowe w języku Prolog stanowią podstawowy mechanizm reprezentacji zbiorów danych.
Listy są strukturami rekurencyjnymi, co umożliwia ich elastyczne przetwarzanie.



2026/01/24 22:07 9/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 9/16

Definicja listy

Lista w Prologu to uporządkowany zbiór elementów, zapisany w nawiasach kwadratowych i oddzielony
przecinkami:

[el1, el2, el3]

Lista może być również pusta:

[]

Operacje na listach

Dostęp do elementów

Lista może być rozbita na głowę (pierwszy element) i ogon (reszta listy):

[H|T]

H – głowa listy (head)1.
T – ogon listy (tail)2.

Przykład:

?- [H|T] = [1,2,3].
H = 1,
T = [2,3].

Sprawdzanie przynależności

Operator `member/2` sprawdza, czy element należy do listy:

member(X, [a,b,c]).

Łączenie list

Operator `append/3` służy do łączenia dwóch list:

append([1,2], [3,4], Result).
Result = [1,2,3,4].
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Długość listy

Predykat `length/2` służy do określania długości listy:

length([a,b,c], N).
N = 3.

Rekurencja na listach

Ze względu na rekurencyjny charakter list, większość algorytmów operujących na listach korzysta z
rekurencji.

Przykład sumowania elementów listy:

sum([], 0).
sum([H|T], S) :-
    sum(T, S1),
    S is H + S1.

Lista jako struktura danych

Listy mogą zawierać zmienne, inne listy, a także złożone struktury:

[[a,b], [c,d]]

Mogą także być niedomknięte (ang. open-ended lists):

[1,2|X]

Jest to przydatne przy konstruowaniu dynamicznych list.

Wypisywanie elementów listy

Predykat wypisujący każdy element listy w osobnej linii:

print_list([]).
print_list([H|T]) :-
    write(H), nl,
    print_list(T).

Przykład użycia:

?- print_list([apple, banana, cherry]).

http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html


2026/01/24 22:07 11/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 11/16

apple
banana
cherry

Wyodrębnianie pierwszego elementu listy

Aby uzyskać pierwszy element listy, możemy użyć dopasowania wzorców (pattern matching) z
użyciem operatora |.

Przykładowy predykat:

first_element([H|_], H).

[H|_] – dopasowuje listę, gdzie `H` to pierwszy element, a `_` ignoruje resztę.1.
H – zmienna zwracająca pierwszy element.2.

Przykład użycia:

?- first_element([a, b, c], X).
X = a.

Wyodrębnianie drugiego elementu listy

Aby uzyskać drugi element listy, możemy użyć dopasowania wzorców, omijając pierwszy element.

Predykat:

second_element([_, Second|_], Second).

[_, Second|_] – ignoruje pierwszy element (`_`), przypisuje drugi do zmiennej `Second`, a1.
resztę ignoruje.

Przykład użycia:

?- second_element([x, y, z], X).
X = y.

Wyodrębnianie ostatniego elementu listy

Aby uzyskać ostatni element listy, możemy wykorzystać rekurencyjne dopasowanie wzorców.

Predykat:

last_element([X], X).
last_element([_|T], X) :-
    last_element(T, X).
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[X] – dopasowanie jednoelementowej listy (ostatni element).1.
[_|T] – rekurencyjne przeszukiwanie ogona listy, aż zostanie tylko jeden element.2.

Przykład użycia:

?- last_element([a, b, c, d], X).
X = d.

Wywołania rekurencyjne:

Znajdowanie elementu w liście

Aby sprawdzić, czy dany element znajduje się w liście, można skorzystać z wbudowanego predykatu
`member/2`, albo zdefiniować własną wersję.

Wersja oparta na rekurencji:

in_list([X|_], X).
in_list([_|T], X) :-
    in_list(T, X).

[X|_] – dopasowanie, jeśli pierwszy element listy to szukany element.1.
[_|T] – rekurencyjne przeszukiwanie ogona listy.2.

Przykład użycia:

?- in_list([1, 2, 3, 4], 3).
true.
 
?- in_list([a, b, c], d).
false.

Alternatywa: użycie wbudowanego predykatu `member/2`:

?- member(3, [1,2,3,4]).

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=notatki%3Aprolog&media=notatki:pasted:20250527-131822.png
http://pauillac.inria.fr/~deransar/prolog/bips.html
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true.

Sprawdzanie, czy lista jest uporządkowana rosnąco

Predykat sprawdzający, czy elementy listy numerycznej rosną lub są równe (nie maleją):

sorted_asc([]).
sorted_asc([_]).
sorted_asc([X, Y | T]) :-
    X =< Y,
    sorted_asc([Y | T]).

[] i [ _ ] — lista pusta lub jednoelementowa jest uporządkowana.1.
[X, Y | T] — sprawdzamy, czy pierwszy element jest mniejszy lub równy drugiemu, a następnie2.
rekurencyjnie resztę listy.

Przykład użycia:

?- sorted_asc([1, 2, 2, 4, 5]).
true.
 
?- sorted_asc([1, 3, 2, 4]).
false.

Wstawianie elementu do listy uporządkowanej rosnąco

Predykat, który wstawia element `X` do posortowanej listy rosnącej `List`, zwracając nową listę
`Result`, również uporządkowaną rosnąco:

insert_sorted(X, [], [X]).
insert_sorted(X, [H|T], [X,H|T]) :-
    X =< H.
insert_sorted(X, [H|T], [H|R]) :-
    X > H,
    insert_sorted(X, T, R).

Jeśli lista jest pusta, nowa lista to `[X]`.1.
Jeśli `X` jest mniejsze lub równe pierwszemu elementowi `H`, wstawiamy `X` przed `H`.2.
W przeciwnym razie rekurencyjnie wstawiamy `X` w ogon listy.3.

Przykład użycia:

?- insert_sorted(3, [1, 2, 4, 5], Result).
Result = [1, 2, 3, 4, 5].

http://pauillac.inria.fr/~deransar/prolog/bips.html
http://pauillac.inria.fr/~deransar/prolog/bips.html


2026/01/24 22:07 14/16 Prolog: Podstawy programowania logicznego

made by Kacper Ostrowski 14/16

Sortowanie listy metodą wstawiania

Predykat sortujący listę numeryczną rosnąco za pomocą algorytmu sortowania przez wstawianie
(*insertion sort*).

Definicja:

insert_sorted(X, [], [X]).
insert_sorted(X, [H|T], [X,H|T]) :-
    X =< H.
insert_sorted(X, [H|T], [H|R]) :-
    X > H,
    insert_sorted(X, T, R).
 
insertion_sort([], []).
insertion_sort([H|T], Sorted) :-
    insertion_sort(T, SortedT),
    insert_sorted(H, SortedT, Sorted).

Opis działania:

`insert_sorted/3` – wstawia element w odpowiednie miejsce w posortowanej liście.1.
`insertion_sort/2` – rekurencyjnie sortuje ogon listy i wstawia bieżący element.2.

Przykład użycia:

?- insertion_sort([4, 1, 3, 2], Sorted).
Sorted = [1, 2, 3, 4].

Obliczanie długości listy

Predykat `length_list/2` oblicza długość listy – czyli liczbę jej elementów – za pomocą rekurencji.

Definicja:

length_list([], 0).
length_list([_|T], N) :-
    length_list(T, N1),
    N is N1 + 1.

[] – pusta lista ma długość 0.1.
[_|T] – ignorujemy pierwszy element i rekurencyjnie liczymy długość ogona listy, zwiększając2.
wynik o 1.

Przykład użycia:

?- length_list([a, b, c, d], N).
N = 4.
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Alternatywnie, można użyć wbudowanego predykatu `length/2`:

?- length([a, b, c, d], N).
N = 4.

Sumowanie elementów listy

Predykat `sum_list/2` oblicza sumę wszystkich elementów numerycznych znajdujących się w liście.

Definicja:

sum_list([], 0).
sum_list([H|T], Sum) :-
    sum_list(T, Rest),
    Sum is H + Rest.

[] – suma pustej listy to 0.1.
[H|T] – dodajemy bieżący element `H` do sumy pozostałych elementów `T`.2.

Przykład użycia:

?- sum_list([1, 2, 3, 4], S).
S = 10.

Można również użyć wbudowanego predykatu `sum_list/2`, który działa identycznie:

?- sum_list([1,2,3,4], S).
S = 10.

Średnia arytmetyczna elementów listy

Predykat `average_list/2` oblicza średnią arytmetyczną wszystkich elementów numerycznych w liście.

Wymaga dwóch pomocniczych predykatów:

`sum_list/2` – oblicza sumę elementów,
`length_list/2` – oblicza długość listy.

Definicja:

sum_list([], 0).
sum_list([H|T], Sum) :-
    sum_list(T, Rest),
    Sum is H + Rest.
 
length_list([], 0).
length_list([_|T], N) :-
    length_list(T, N1),
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    N is N1 + 1.
 
average_list(List, Avg) :-
    sum_list(List, Sum),
    length_list(List, Length),
    Length > 0,
    Avg is Sum / Length.

Opis działania:

Najpierw obliczamy sumę elementów listy.1.
Następnie obliczamy jej długość.2.
Obliczamy średnią jako `Sum / Length`.3.

Przykład użycia:

?- average_list([2, 4, 6, 8], A).
A = 5.0.

Uwaga: predykat sprawdza, czy długość listy jest większa od zera, aby uniknąć dzielenia przez zero.
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