
2026/01/24 22:08 1/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 1/25

Badania operacyjne: Programowanie Liniowe
ćwiczenia

Programowanie liniowe (eng. LP) to jedna z najważniejszych dziedzin optymalizacji matematycznej,
której celem jest maksymalizacja lub minimalizacja funkcji liniowej przy spełnieniu określonych
ograniczeń również w postaci równań lub nierówności liniowych. Metody programowania liniowego
znajdują zastosowanie w wielu dziedzinach, takich jak logistyka, ekonomia, inżynieria, zarządzanie
produkcją, analiza finansowa czy planowanie strategiczne.

Krótka historia

Początki programowania liniowego sięgają lat 30. XX wieku, jednak jego dynamiczny rozwój rozpoczął
się w czasie II wojny światowej. W 1947 roku amerykański matematyk George Dantzig opracował
metodę simpleks, która zrewolucjonizowała sposób rozwiązywania problemów optymalizacyjnych i do
dziś pozostaje jedną z najpopularniejszych metod rozwiązywania problemów PL.

Od tamtej pory programowanie liniowe stało się integralną częścią badań operacyjnych (ang.
operations research) i zyskało szerokie uznanie w praktyce gospodarczej i naukowej.

Podstawowe pojęcia

Podstawowe elementy programowania liniowego to:

Funkcja celu – funkcja liniowa, którą chcemy maksymalizować lub minimalizować (np. zysk,
koszt, czas).
Zmienna decyzyjna – wielkości, których wartości są poszukiwane i które mają wpływ na wartość
funkcji celu.
Ograniczenia (restrykcje) – warunki, jakie muszą być spełnione przez zmienne decyzyjne,
zwykle w formie równań lub nierówności liniowych.
Obszar dopuszczalny – zbiór wszystkich możliwych rozwiązań, które spełniają ograniczenia.
Rozwiązanie optymalne – punkt w obszarze dopuszczalnym, dla którego funkcja celu osiąga
wartość największą (maksimum) lub najmniejszą (minimum), zgodnie z założeniem problemu.

W kolejnych sekcjach tego artykułu przedstawione zostaną metody rozwiązywania problemów
programowania liniowego oraz przykłady praktycznych zastosowań.

Jak zainstalować Solver

2026/01/24 22:08 2/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 2/25

Przykład problemu produkcyjnego – "Lampy"

Rozważmy typowy problem produkcyjny, w którym celem jest maksymalizacja zysku przy
ograniczonych zasobach czasu i materiałów.

Rzemieślnik produkuje dwa rodzaje lamp:

Lampy stojące (duże) – wymagają 6 godzin pracy i 200 zł na materiały, zysk z jednej sztuki
wynosi 240 zł.
Lampy biurkowe (małe) – wymagają 5 godzin pracy i 100 zł na materiały, zysk z jednej sztuki
wynosi 160 zł.

Rzemieślnik dysponuje tygodniowo:

maksymalnie 40 godzinami pracy,

2026/01/24 22:08 3/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 3/25

maksymalnie 1000 zł na materiały.

Zadanie polega na określeniu, ile lamp każdego typu powinien produkować tygodniowo, aby
zmaksymalizować swój zysk, nie przekraczając dostępnych zasobów.

Zmienna decyzyjna

Niech:

x – liczba lamp stojących produkowanych tygodniowo,
y – liczba lamp biurkowych produkowanych tygodniowo.

Funkcja celu

Chcemy zmaksymalizować zysk:

$$ Z = 240x + 160y $$

Ograniczenia

1. Czas pracy:

$$ 6x + 5y \leq 40 $$

2. Koszt materiałów:

$$ 200x + 100y \leq 1000 $$

3. Nieujemność zmiennych (nie można wyprodukować ujemnej liczby lamp):

$$ x \geq 0,\quad y \geq 0 $$

Model matematyczny

$$ \begin{cases} \text{Maksymalizuj } Z = 240x + 160y \\ \text{przy warunkach:} \\ 6x + 5y \leq 40
\\ 200x + 100y \leq 1000 \\ x \geq 0,\ y \geq 0 \end{cases} $$

W kolejnych krokach można ten model rozwiązać metodą graficzną (ponieważ są tylko dwie zmienne)
lub zastosować metodę simpleks. Wynik da nam optymalną liczbę lamp każdego typu, które powinien
produkować rzemieślnik, by osiągnąć maksymalny zysk.

Rozwiązanie problemu lamp – Excel i Python

2026/01/24 22:08 4/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 4/25

Rozwiązanie w Excelu (Dodatek Solver)

Aby rozwiązać problem programowania liniowego w Excelu, można skorzystać z wbudowanego
narzędzia Solver:

Krok po kroku:

1. Wprowadź dane do arkusza:

A B C
1 Lampy stojące (x) Lampy biurkowe (y)
2 Zysk jednostkowy 240 160
3 Czas pracy 6 5
4 Koszt materiału 200 100
5 Ilość =x =y

2. Wprowadź zmienne decyzji (np. komórki B5 i C5) – to będą liczby lamp.

3. Oblicz łączny zysk: W komórce D1 wpisz formułę: =240*B5 + 160*C5

4. Oblicz zużycie zasobów:

Łączny czas pracy: `=6*B5 + 5*C5`
Łączny koszt materiałów: `=200*B5 + 100*C5`

5. Otwórz Solver:

`Dane > Solver`
Ustaw „Maksymalizuj”: komórka z całkowitym zyskiem
Zmieniane komórki: `B5:C5`

Ograniczenia:

czas pracy ≤ 40
koszt materiałów ≤ 1000
B5 ≥ 0, C5 ≥ 0

6. Wybierz Simplex LP jako metodę rozwiązywania.

7. Kliknij Rozwiąż.

Rozwiązanie w Pythonie (biblioteka `PuLP`)

Python oferuje bibliotekę `PuLP`, która umożliwia tworzenie i rozwiązywanie problemów
programowania liniowego.

2026/01/24 22:08 5/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 5/25

Przykładowy kod:

from pulp import LpMaximize, LpProblem, LpVariable

Definiowanie problemu
model = LpProblem(name="lamp-production", sense=LpMaximize)

Zmienne decyzyjne (rzeczywiste)
x = LpVariable(name="lampy_stojace", lowBound=0)
y = LpVariable(name="lampy_biurkowe", lowBound=0)

Funkcja celu
model += 240 * x + 160 * y, "Zysk"

Ograniczenia
model += (6 * x + 5 * y <= 40, "Czas_pracy")
model += (200 * x + 100 * y <= 1000, "Koszt_materialow")

Rozwiązanie
model.solve()

Wynik
print(f"Lampy stojące: {x.value()}")
print(f"Lampy biurkowe: {y.value()}")
print(f"Maksymalny zysk: {model.objective.value()} zł")

Wynik

Lampy stojące: 2.5
Lampy biurkowe: 5.0
Maksymalny zysk: 1400.0 zł

Przykład problemu produkcyjnego – Rajstopy

Rozważmy problem optymalizacji produkcji w zakładzie wytwarzającym dwa rodzaje rajstop: cienkie i
grube. Celem jest maksymalizacja utargu, przy ograniczonych zasobach surowców.

Treść zadania

Zakład produkuje:

Rajstopy cienkie – wymagają: 10 g przędzy elastycznej i 10 g bawełnianej,
Rajstopy grube – wymagają: 20 g przędzy elastycznej i 25 g bawełnianej.

Stan magazynowy:

2026/01/24 22:08 6/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 6/25

200 kg przędzy elastycznej = 200 000 g,
500 kg przędzy bawełnianej = 500 000 g.

Ceny sprzedaży:

Rajstopy cienkie: 1,50 zł / para,
Rajstopy grube: 4,00 zł / para.

Zmienna decyzyjna

Niech:

x – liczba par rajstop cienkich,
y – liczba par rajstop grubych.

Funkcja celu

Zakład chce zmaksymalizować utarg (czyli całkowity przychód):

$$ Z = 1.5x + 4y $$

Ograniczenia

1. Zużycie przędzy elastycznej:

$$ 10x + 20y \leq 200\,000 $$

2. Zużycie przędzy bawełnianej:

$$ 10x + 25y \leq 500\,000 $$

3. Nieujemność zmiennych:

$$ x \geq 0,\quad y \geq 0 $$

Model matematyczny

$$ \begin{cases} \text{Maksymalizuj } Z = 1.5x + 4y \\ \text{przy warunkach:} \\ 10x + 20y \leq
200\,000 \\ 10x + 25y \leq 500\,000 \\ x \geq 0,\ y \geq 0 \end{cases} $$

Komentarz

Model ten można rozwiązać w Excelu (przy pomocy dodatku Solver) lub w Pythonie, np. za pomocą
biblioteki `PuLP`. Wynikiem będzie liczba par rajstop cienkich i grubych, które zakład powinien
wyprodukować, aby osiągnąć jak największy przychód, nie przekraczając dostępnych zapasów
przędzy.

2026/01/24 22:08 7/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 7/25

W kolejnych sekcjach można przedstawić konkretne rozwiązanie (metodą graficzną, w Excelu lub
Pythonie) i analizę wyniku.

Rozwiązanie w Pythonie (biblioteka `PuLP`)

Python oferuje bibliotekę `PuLP`, która umożliwia tworzenie i rozwiązywanie problemów
programowania liniowego.

Przykładowy kod:

from pulp import LpMaximize, LpProblem, LpVariable

Tworzymy problem maksymalizacji
model = LpProblem(name="produkcja-rajstop", sense=LpMaximize)

Zmienne decyzyjne (liczba par rajstop)
x = LpVariable(name="rajstopy_cienkie", lowBound=0)
y = LpVariable(name="rajstopy_grube", lowBound=0)

Funkcja celu – maksymalizacja utargu
model += 1.5 * x + 4 * y, "Utarg"

Ograniczenia zużycia przędzy (gramy)
model += (10 * x + 20 * y <= 200_000, "Przędza_elastyczna")
model += (10 * x + 25 * y <= 500_000, "Przędza_bawełniana")

Rozwiązanie
model.solve()

Wyniki
print("Plan produkcji maksymalizujący utarg:")
print(f"Rajstopy cienkie: {x.value()} par")
print(f"Rajstopy grube: {y.value()} par")
print(f"Maksymalny utarg: {model.objective.value()} zł")

Nagłówek

Plan produkcji maksymalizujący utarg:
Rajstopy cienkie: 0.0 par
Rajstopy grube: 10000.0 par
Maksymalny utarg: 40000.0 zł

2026/01/24 22:08 8/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 8/25

Przykład problemu produkcyjnego – "Lampy"

Zakład produkcyjny wytwarza trzy rodzaje tkanin:

Pościelowe
Sukienkowe
Dekoracyjne

Proces produkcji każdej tkaniny przebiega w trzech wydziałach:

Przędzalnia
Tkalnia
Wykończalnia

Dla każdego rodzaju tkaniny określono:

Jednostkowe zużycie czasu pracy maszyn (w minutach na 1 mb – metr bieżący),
Jednostkowy zysk (w złotówkach na 1 mb).

Maksymalny czas pracy maszyn w każdym z wydziałów jest ograniczony – wartości te podano w
godzinach, co należy przeliczyć na minuty (1 godzina = 60 minut).

Dane wejściowe

Tkaniny Przędzalnia
[min]

Tkalnia
[min]

Wykończalnia
[min]

Zysk
jednostkowy
[zł]

Pościelowe 2 1 2 5
Sukienkowe 1 2 2 4.5
Dekoracyjne 2 2 1 6
Maksymalny czas pracy
maszyn (w godz.) 2400 3000 2600

Po przeliczeniu na minuty 144000 180000 156000

Zmienna decyzyjna

Niech:

x – liczba metrów bieżących tkanin pościelowych,
y – liczba metrów bieżących tkanin sukienkowych,
z – liczba metrów bieżących tkanin dekoracyjnych.

Funkcja celu

Celem jest maksymalizacja zysku:

$$ Z = 5x + 4.5y + 6z $$

2026/01/24 22:08 9/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 9/25

Ograniczenia czasowe (przeliczone na minuty)

1. Przędzalnia:

$$ 2x + 1y + 2z \leq 144000 $$

2. Tkalnia:

$$ 1x + 2y + 2z \leq 180000 $$

3. Wykończalnia:

$$ 2x + 2y + 1z \leq 156000 $$

4. Nieujemność zmiennych:

$$ x \geq 0,\quad y \geq 0,\quad z \geq 0 $$

Model matematyczny

$$ \begin{cases} \text{Maksymalizuj } Z = 5x + 4.5y + 6z \\ \text{przy warunkach:} \\ 2x + 1y + 2z
\leq 144000 \\ 1x + 2y + 2z \leq 180000 \\ 2x + 2y + 1z \leq 156000 \\ x, y, z \geq 0 \end{cases} $$

Cel zadania

Wyznaczyć optymalny plan produkcji tkanin, czyli wartości x, y, z, które maksymalizują zysk
zakładu, nie przekraczając dostępnych limitów czasu pracy maszyn w każdym dziale produkcyjnym.

Rozwiązanie w Pythonie (biblioteka `PuLP`)

Python oferuje bibliotekę `PuLP`, która umożliwia tworzenie i rozwiązywanie problemów
programowania liniowego.

Przykładowy kod:

from pulp import LpMaximize, LpProblem, LpVariable

Tworzymy model
model = LpProblem(name="produkcja-tkanin", sense=LpMaximize)

Zmienne decyzyjne: ilość mb tkanin
x = LpVariable(name="tkanina_poscielowa", lowBound=0)
y = LpVariable(name="tkanina_sukienkowa", lowBound=0)
z = LpVariable(name="tkanina_dekoracyjna", lowBound=0)

Funkcja celu: maksymalizacja zysku

2026/01/24 22:08 10/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 10/25

model += 5 * x + 4.5 * y + 6 * z, "Zysk"

Ograniczenia czasowe – przeliczone na minuty
model += 2 * x + 1 * y + 2 * z <= 144_000, "Przędzalnia"
model += 1 * x + 2 * y + 2 * z <= 180_000, "Tkalnia"
model += 2 * x + 2 * y + 1 * z <= 156_000, "Wykończalnia"

Rozwiązanie
model.solve()

Wyniki
print("Optymalny plan produkcji:")
print(f"Tkanina pościelowa: {x.value():.2f} mb")
print(f"Tkanina sukienkowa: {y.value():.2f} mb")
print(f"Tkanina dekoracyjna: {z.value():.2f} mb")
print(f"Maksymalny zysk: {model.objective.value():.2f} zł")

Wynik

Optymalny plan produkcji:
Tkanina pościelowa: 12000.00 mb
Tkanina sukienkowa: 48000.00 mb
Tkanina dekoracyjna: 36000.00 mb
Maksymalny zysk: 492000.00 zł

Przykład problemu produkcyjnego –
kapelusze

Pracownia specjalizująca się w produkcji męskich kapeluszy i beretów dysponuje ograniczonymi
zasobami surowca oraz stoi wobec ograniczonego popytu rynkowego. Celem jest opracowanie takiego
planu produkcji, który zmaksymalizuje całkowity zysk w miesiącach jesienno-zimowych (I i IV
kwartał).

Treść zadania

Surowiec: podstawowym materiałem do produkcji obu wyrobów jest filc.
Na jeden kapelusz potrzeba: 0,6 m² filcu.
Na jeden beret potrzeba: 0,4 m² filcu.
Łączny miesięczny limit zakupu filcu: 960 m².
Popyt rynkowy: nie więcej niż 1000 sztuk każdego produktu miesięcznie.

Zysk jednostkowy:

Kapelusz: 3 zł/szt.
Beret: 2 zł/szt.

2026/01/24 22:08 11/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 11/25

Zmienna decyzyjna

Niech:

x – liczba produkowanych kapeluszy miesięcznie,
y – liczba produkowanych beretów miesięcznie.

Funkcja celu

Celem jest maksymalizacja zysku:

$$ Z = 3x + 2y $$

Ograniczenia

1. Zużycie filcu:

$$ 0.6x + 0.4y \leq 960 $$

2. Ograniczenia popytowe (sprzedażowe):

$$ x \leq 1000 \\ y \leq 1000 $$

3. Nieujemność zmiennych:

$$ x \geq 0,\quad y \geq 0 $$

Model matematyczny

$$ \begin{cases} \text{Maksymalizuj } Z = 3x + 2y \\ \text{przy warunkach:} \\ 0.6x + 0.4y \leq 960
\\ x \leq 1000 \\ y \leq 1000 \\ x, y \geq 0 \end{cases} $$

Cel zadania

Wyznaczyć liczbę kapeluszy i beretów, jaką pracownia powinna produkować w miesiącach jesienno-
zimowych, aby osiągnąć maksymalny zysk, przy uwzględnieniu ograniczeń materiałowych oraz
popytowych.

Rozwiązanie w Pythonie (biblioteka `PuLP`)

Python oferuje bibliotekę `PuLP`, która umożliwia tworzenie i rozwiązywanie problemów
programowania liniowego.

2026/01/24 22:08 12/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 12/25

Przykładowy kod:

from pulp import LpMaximize, LpProblem, LpVariable

Tworzymy model maksymalizacji zysku
model = LpProblem(name="produkcja-kapeluszy-i-beretow", sense=LpMaximize)

Zmienne decyzyjne: liczba kapeluszy i beretów
x = LpVariable(name="kapelusze", lowBound=0)
y = LpVariable(name="berety", lowBound=0)

Funkcja celu: maksymalizacja zysku
model += 3 * x + 2 * y, "Zysk"

Ograniczenie zużycia filcu
model += 0.6 * x + 0.4 * y <= 960, "Filc"

Ograniczenia popytowe
model += x <= 1000, "Max_kapelusze"
model += y <= 1000, "Max_berety"

Rozwiązanie
model.solve()

Wyniki
print("Optymalny plan produkcji:")
print(f"Kapelusze: {x.value():.0f} szt.")
print(f"Berety: {y.value():.0f} szt.")
print(f"Maksymalny zysk: {model.objective.value():.2f} zł")

Wynik:

Optymalny plan produkcji:
Kapelusze: 1000 szt.
Berety: 900 szt.
Maksymalny zysk: 4800.00 zł

Przykład problemu produkcyjnego – Pani
Zuzia

Pani Zuzia prowadzi małą firmę gastronomiczną, w której przygotowuje dwa rodzaje dań: Maxi i Mini.
Oba dania różnią się wielkością porcji, zużyciem składników oraz ceną sprzedaży. Celem jest ustalenie
takiej liczby dań każdego typu, aby zmaksymalizować dzienny przychód z ich sprzedaży –
zakładamy, że wszystko, co zostanie przygotowane, zostanie również sprzedane.

2026/01/24 22:08 13/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 13/25

Treść zadania

Dania oferowane:

Maxi – cena: 19 zł
Mini – cena: 11 zł

Składniki potrzebne do przygotowania:

Mięso:

Maxi: 7 dag (0,07 kg)
Mini: 4 dag (0,04 kg)

Kapusta:

Maxi: 10 dag (0,10 kg)
Mini: 7 dag (0,07 kg)

Dzienne zapasy:

Mięso: 1,3 kg
Kapusta: 2,0 kg

Zmienna decyzyjna

Niech:

x – liczba dań typu Maxi,
y – liczba dań typu Mini.

Funkcja celu

Celem jest maksymalizacja przychodu:

$$ Z = 19x + 11y $$

Ograniczenia zasobów

1. Mięso:

$$ 0.07x + 0.04y \leq 1.3 $$

2. Kapusta:

$$ 0.10x + 0.07y \leq 2.0 $$

3. Nieujemność zmiennych:

2026/01/24 22:08 14/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 14/25

$$ x \geq 0,\quad y \geq 0 $$

Model matematyczny

$$ \begin{cases} \text{Maksymalizuj } Z = 19x + 11y \\ \text{przy warunkach:} \\ 0.07x + 0.04y \leq
1.3 \\ 0.10x + 0.07y \leq 2.0 \\ x, y \geq 0 \end{cases} $$

Cel zadania

Wyznaczyć ile dań typu Maxi oraz Mini powinna przygotowywać Pani Zuzia dziennie, aby osiągnąć
maksymalny możliwy przychód, przy ograniczonych zasobach mięsa i kapusty.

Rozwiązanie w Pythonie (biblioteka `PuLP`)

Python oferuje bibliotekę `PuLP`, która umożliwia tworzenie i rozwiązywanie problemów
programowania liniowego.

Przykładowy kod:

from pulp import LpMaximize, LpProblem, LpVariable, LpInteger

Tworzymy model optymalizacji
model = LpProblem(name="produkcja-dan-pani-zuzia", sense=LpMaximize)

Zmienne decyzyjne jako liczby całkowite
x = LpVariable(name="danie_maxi", lowBound=0, cat=LpInteger)
y = LpVariable(name="danie_mini", lowBound=0, cat=LpInteger)

Funkcja celu: maksymalizacja przychodu
model += 19 * x + 11 * y, "Przychod"

Ograniczenia surowców
model += 0.07 * x + 0.04 * y <= 1.3, "Ograniczenie_miesa"
model += 0.10 * x + 0.07 * y <= 2.0, "Ograniczenie_kapusty"

Rozwiązanie problemu
model.solve()

Wyniki
print("Optymalny plan produkcji (liczby całkowite):")
print(f"Dania Maxi: {int(x.value())} szt.")
print(f"Dania Mini: {int(y.value())} szt.")
print(f"Maksymalny przychód: {model.objective.value():.2f} zł")

2026/01/24 22:08 15/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 15/25

Wynik:

Optymalny plan produkcji (liczby całkowite):
Dania Maxi: 14 szt.
Dania Mini: 8 szt.
Maksymalny przychód: 354.00 zł

Przykład Minimalizacyjny Ogrzewanie
pomieszczeń

Do ogrzania dwóch pomieszczeń o początkowej temperaturze 0°C można używać dwóch źródeł ciepła:
węgla i koksu. Każde z tych paliw wpływa inaczej na temperaturę w pomieszczeniach, a ich ceny
również się różnią.

Dane wejściowe

Początkowa temperatura w obu pomieszczeniach: 0°C Minimalne wymagane temperatury:

Pomieszczenie 1: co najmniej 180°C
Pomieszczenie 2: co najmniej 200°C

fekt spalania: 1 kg węgla:

Pomieszczenie 1: +30°C
Pomieszczenie 2: +20°C

1 kg koksu:

Pomieszczenie 1: +10°C
Pomieszczenie 2: +20°C

Koszty:

1 tona węgla: 500 zł → 1 kg = 0,50 zł
1 tona koksu: 300 zł → 1 kg = 0,30 zł

Zmienne decyzyjne

$ x $ – liczba kg węgla do spalenia
$ y $ – liczba kg koksu do spalenia

2026/01/24 22:08 16/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 16/25

Funkcja celu

Minimalizacja łącznego kosztu ogrzewania: $$ \min Z = 0.50x + 0.30y $$

Ograniczenia

Temperatury muszą być osiągnięte lub przekroczone:

Dla pierwszego pomieszczenia:

$$ 30x + 10y \geq 180 $$

Dla drugiego pomieszczenia:

$$ 20x + 20y \geq 200 $$

Dodatkowo, nie możemy spalać ujemnych ilości paliwa:

$$ x \geq 0,\quad y \geq 0 $$

Cel

Wyznaczyć minimalne ilości węgla $ x $ i koksu $ y $, które pozwolą uzyskać wymaganą temperaturę
w obu pomieszczeniach przy najniższym koszcie ogrzewania.

Rozwiązanie

Rozwiązanie można uzyskać za pomocą:

arkusza kalkulacyjnego (Excel: dodając Solver),
programowania liniowego w Pythonie (np. z użyciem biblioteki PuLP),
metody graficznej (jeśli szukamy wizualnego zrozumienia dla 2 zmiennych).

Rozwiązanie w Pythonie (biblioteka `PuLP`)

Python oferuje bibliotekę `PuLP`, która umożliwia tworzenie i rozwiązywanie problemów
programowania liniowego.

Przykładowy kod:

from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, value

Tworzenie modelu

2026/01/24 22:08 17/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 17/25

model = LpProblem("ogrzewanie_pomieszczen", LpMinimize)

Zmienne decyzyjne: kg węgla (x), kg koksu (y)
x = LpVariable("wegiel_kg", lowBound=0)
y = LpVariable("koks_kg", lowBound=0)

Funkcja celu: minimalizacja kosztów
model += 0.50 * x + 0.30 * y, "Koszt_ogrzewania"

Ograniczenia temperatury
model += 30 * x + 10 * y >= 180, "Temp_pomieszczenie_1"
model += 20 * x + 20 * y >= 200, "Temp_pomieszczenie_2"

Rozwiązanie
model.solve()

Wyniki
print("Status:", LpStatus[model.status])
print("Węgiel (kg):", round(x.value(), 2))
print("Koks (kg):", round(y.value(), 2))
print("Minimalny koszt (zł):", round(value(model.objective), 2))

Wynik:

Status: Optimal
Węgiel (kg): 4.0
Koks (kg): 6.0
Minimalny koszt (zł): 3.8

Problem transportowy - Transport mieszanki
soli i piasku

Miasto musi w okresie zimowym dostarczyć mieszankę soli i piasku z dwóch składnic do czterech
dzielnic. Celem jest ustalenie takiego planu transportu, który zaspokoi zapotrzebowanie
wszystkich dzielnic przy najniższym możliwym koszcie transportu.

Dane wejściowe

Miasto dysponuje dwiema składnicami materiału.
Materiał musi być rozwieziony do czterech dzielnic.
Każda dzielnica ma określone zapotrzebowanie na mieszankę (w tonach).
Każda składnica ma ograniczoną maksymalną ilość materiału, jaką może dostarczyć.
Koszty transportu (w zł/t) różnią się w zależności od trasy (składnica–dzielnica).

2026/01/24 22:08 18/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 18/25

Tabela kosztów transportu i zapotrzebowań

Dzielnica Składnica 1 (zł/t) Składnica 2 (zł/t) Zapotrzebowanie (t)
1 2.00 4.00 300
2 3.00 3.50 450
3 1.50 2.50 500
4 2.50 3.00 350

Pojemności składnic

Składnica 1: 900 ton
Składnica 2: 750 ton

Zmienne decyzyjne

Niech: x_{ij} – ilość ton mieszanki przetransportowanej ze składnicy i do dzielnicy j, gdzie $i
\in \{1, 2\}$ i $j \in \{1, 2, 3, 4\}$.

Funkcja celu

Minimalizacja całkowitego kosztu transportu:

$$ Z = \min \sum_{i=1}^{2} \sum_{j=1}^{4} c_{ij} \cdot x_{ij} $$

Gdzie c_{ij} to koszt transportu 1 tony ze składnicy i do dzielnicy j.

Ograniczenia

Pojemności składnic:

$$ x_{11} + x_{12} + x_{13} + x_{14} \leq 900 \\ x_{21} + x_{22} + x_{23} + x_{24} \leq 750 $$

Zapotrzebowanie dzielnic:

$$ x_{11} + x_{21} = 300 \\ x_{12} + x_{22} = 450 \\ x_{13} + x_{23} = 500 \\ x_{14} + x_{24}
= 350 $$

Nieujemność zmiennych:

$$ x_{ij} \geq 0 \quad \text{dla każdego } i, j $$

Cel

Wyznaczyć optymalne wartości x_{ij}, aby całkowity koszt transportu był jak najmniejszy, a

2026/01/24 22:08 19/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 19/25

jednocześnie spełnione zostały ograniczenia zapotrzebowania i pojemności.

Uwagi

To klasyczny przykład tzw. problemu transportowego w programowaniu liniowym. Rozwiązanie
można znaleźć m.in. za pomocą:

metody potencjałów (ręcznie lub w arkuszu kalkulacyjnym),
programowania liniowego w Pythonie (np. `PuLP`, `scipy.optimize`),
narzędzi takich jak Excel Solver.

Rozwiązanie w Pythonie (biblioteka `PuLP`)

Python oferuje bibliotekę `PuLP`, która umożliwia tworzenie i rozwiązywanie problemów
programowania liniowego.

Przykładowy kod:

import pulp

Tworzymy problem minimalizacji kosztów
problem = pulp.LpProblem("Transport_soli_i_piasku", pulp.LpMinimize)

Składnice i dzielnice
skladnice = [1, 2]
dzielnice = [1, 2, 3, 4]

Koszty transportu c_ij (słownik)
koszty = {
 (1, 1): 2.00, (1, 2): 3.00, (1, 3): 1.50, (1, 4): 2.50,
 (2, 1): 4.00, (2, 2): 3.50, (2, 3): 2.50, (2, 4): 3.00
}

Zapotrzebowania dzielnic
zapotrzebowanie = {1: 300, 2: 450, 3: 500, 4: 350}

Pojemności składnic
pojemnosc = {1: 900, 2: 750}

Zmienne decyzyjne x_ij: ilość materiału z i-tej składnicy do j-tej
dzielnicy
x = pulp.LpVariable.dicts("x", [(i, j) for i in skladnice for j in
dzielnice],
 lowBound=0, cat='Continuous')

Funkcja celu: minimalizacja kosztu transportu
problem += pulp.lpSum(koszty[i, j] * x[i, j] for i in skladnice for j in

2026/01/24 22:08 20/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 20/25

dzielnice), "Koszt_calkowity"

Ograniczenia pojemności składnic
for i in skladnice:
 problem += pulp.lpSum(x[i, j] for j in dzielnice) <= pojemnosc[i],
f"Pojemnosc_skladnicy_{i}"

Ograniczenia zapotrzebowania dzielnic
for j in dzielnice:
 problem += pulp.lpSum(x[i, j] for i in skladnice) == zapotrzebowanie[j],
f"Zapotrzebowanie_dzielnicy_{j}"

Rozwiązanie problemu
problem.solve()

Wyniki
print("Status:", pulp.LpStatus[problem.status])
print("Minimalny koszt transportu:", pulp.value(problem.objective), "zł")

for i in skladnice:
 for j in dzielnice:
 print(f"x({i},{j}) = {x[i, j].varValue} t")

Wynik

Status: Optimal
Minimalny koszt transportu: 3925.0 zł
x(1,1) = 300.0 t
x(1,2) = 0.0 t
x(1,3) = 500.0 t
x(1,4) = 100.0 t
x(2,1) = 0.0 t
x(2,2) = 450.0 t
x(2,3) = 0.0 t
x(2,4) = 250.0 t

Kod bez dynamicznego generowania ograniczeń i transportów

import pulp

Tworzymy problem minimalizacji kosztów
problem = pulp.LpProblem("Transport_soli_i_piasku", pulp.LpMinimize)

Koszty transportu
koszty = {
 (1, 1): 2.00, (1, 2): 3.00, (1, 3): 1.50, (1, 4): 2.50,
 (2, 1): 4.00, (2, 2): 3.50, (2, 3): 2.50, (2, 4): 3.00
}

2026/01/24 22:08 21/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 21/25

Zapotrzebowanie i pojemności
zapotrzebowanie_1 = 300
zapotrzebowanie_2 = 450
zapotrzebowanie_3 = 500
zapotrzebowanie_4 = 350

pojemnosc_1 = 900
pojemnosc_2 = 750

Zmienne decyzyjne
x_11 = pulp.LpVariable("x_11", lowBound=0, cat='Continuous')
x_12 = pulp.LpVariable("x_12", lowBound=0, cat='Continuous')
x_13 = pulp.LpVariable("x_13", lowBound=0, cat='Continuous')
x_14 = pulp.LpVariable("x_14", lowBound=0, cat='Continuous')
x_21 = pulp.LpVariable("x_21", lowBound=0, cat='Continuous')
x_22 = pulp.LpVariable("x_22", lowBound=0, cat='Continuous')
x_23 = pulp.LpVariable("x_23", lowBound=0, cat='Continuous')
x_24 = pulp.LpVariable("x_24", lowBound=0, cat='Continuous')

Funkcja celu
problem += (
 2.00 * x_11 + 3.00 * x_12 + 1.50 * x_13 + 2.50 * x_14 +
 4.00 * x_21 + 3.50 * x_22 + 2.50 * x_23 + 3.00 * x_24
), "Koszt_calkowity"

Ograniczenia pojemności składnic
problem += x_11 + x_12 + x_13 + x_14 <= pojemnosc_1, "Pojemnosc_skladnicy_1"
problem += x_21 + x_22 + x_23 + x_24 <= pojemnosc_2, "Pojemnosc_skladnicy_2"

Ograniczenia zapotrzebowania dzielnic
problem += x_11 + x_21 == zapotrzebowanie_1, "Zapotrzebowanie_dzielnicy_1"
problem += x_12 + x_22 == zapotrzebowanie_2, "Zapotrzebowanie_dzielnicy_2"
problem += x_13 + x_23 == zapotrzebowanie_3, "Zapotrzebowanie_dzielnicy_3"
problem += x_14 + x_24 == zapotrzebowanie_4, "Zapotrzebowanie_dzielnicy_4"

Rozwiązanie problemu
problem.solve()

Wyniki
print("Status:", pulp.LpStatus[problem.status])
print("Minimalny koszt transportu:", pulp.value(problem.objective), "zł")

print("x(1,1) =", x_11.varValue, "t")
print("x(1,2) =", x_12.varValue, "t")
print("x(1,3) =", x_13.varValue, "t")
print("x(1,4) =", x_14.varValue, "t")
print("x(2,1) =", x_21.varValue, "t")
print("x(2,2) =", x_22.varValue, "t")
print("x(2,3) =", x_23.varValue, "t")

2026/01/24 22:08 22/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 22/25

print("x(2,4) =", x_24.varValue, "t")

Transport truskawek

W sezonie letnim truskawki zbierane przez plantatorów muszą być dostarczone do punktów skupu.
Każdy z plantatorów dysponuje określoną ilością truskawek (w tonach), a każdy punkt skupu ma
sprecyzowane zapotrzebowanie. Celem jest tak zaplanować transport, aby pokryć zapotrzebowanie
punktów skupu przy minimalnych kosztach transportu.

Dane wejściowe

Dostępność truskawek u plantatorów:

Plantator I: 12 tony
Plantator II: 30 ton
Plantator III: 6 ton

Zapotrzebowanie punktów skupu:

Punkt A: 18 ton
Punkt B: 12 ton
Punkt C: 18 ton

Tabela kosztów transportu (w zł za 1 tonę)

Plantator ↓ / Punkt → A B C
I 80 160 160
II 240 320 80
III 32 160 32

Zmienne decyzyjne

Niech:

x_{ij} – ilość ton truskawek transportowana od plantatora i do punktu skupu j

gdzie $i \in \{1,2,3\}$ (plantatorzy) i $j \in \{A,B,C\}$ (punkty skupu)

Funkcja celu

Minimalizacja całkowitego kosztu transportu:

$$ Z = \min \sum_{i=1}^{3} \sum_{j \in \{A,B,C\}} c_{ij} \cdot x_{ij} $$

2026/01/24 22:08 23/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 23/25

Gdzie c_{ij} to koszt transportu 1 tony z plantatora i do punktu skupu j.

Ograniczenia

Dostępność u plantatorów: $$ x_{1A} + x_{1B} + x_{1C} \leq 24 \\ x_{2A} + x_{2B} + x_{2C}
\leq 30 \\ x_{3A} + x_{3B} + x_{3C} \leq 6 $$

Zapotrzebowanie punktów skupu: $$ x_{1A} + x_{2A} + x_{3A} = 18 \\ x_{1B} + x_{2B} +
x_{3B} = 12 \\ x_{1C} + x_{2C} + x_{3C} = 18 $$

Nieujemność zmiennych: $$ x_{ij} \geq 0 \quad \text{dla każdego } i,j $$

Cel

Wyznaczyć optymalne wartości zmiennych x_{ij}, aby:

Całkowity koszt transportu był najniższy
Spełnione zostały ograniczenia dostępności i zapotrzebowania

Uwagi

To klasyczny problem transportowy możliwy do rozwiązania z użyciem:

Python + PuLP
Excel Solver
Metody północno-zachodniego narożnika + metoda potencjałów (dla zadań ręcznych)

Kod

from pulp import LpProblem, LpVariable, LpMinimize, LpStatus, lpSum, value

Model
model = LpProblem("transport_truskawek", LpMinimize)

Plantatorzy i punkty skupu
plantatorzy = ['P1', 'P2', 'P3']
punkty_skupu = ['A', 'B', 'C']

Koszty transportu (zł/t)
koszty = {
 ('P1', 'A'): 80, ('P1', 'B'): 160, ('P1', 'C'): 160,
 ('P2', 'A'): 240, ('P2', 'B'): 320, ('P2', 'C'): 80,
 ('P3', 'A'): 32, ('P3', 'B'): 160, ('P3', 'C'): 32
}

2026/01/24 22:08 24/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 24/25

Ilość dostępnych truskawek (t)
dostawy = {'P1': 12, 'P2': 30, 'P3': 6}

Zapotrzebowanie punktów skupu (t)
zapotrzebowanie = {'A': 18, 'B': 12, 'C': 18}

Zmienne decyzyjne
x = {
 (p, s): LpVariable(f"x_{p}_{s}", lowBound=0)
 for p in plantatorzy for s in punkty_skupu
}

Funkcja celu: minimalizacja kosztów transportu
model += lpSum(koszty[p, s] * x[p, s] for p in plantatorzy for s in
punkty_skupu), "Koszt_calkowity"

Ograniczenia dostępności plantatorów
for p in plantatorzy:
 model += lpSum(x[p, s] for s in punkty_skupu) <= dostawy[p],
f"Dostawa_{p}"

Ograniczenia zapotrzebowania punktów skupu
for s in punkty_skupu:
 model += lpSum(x[p, s] for p in plantatorzy) == zapotrzebowanie[s],
f"Zapotrzebowanie_{s}"

Rozwiązanie
model.solve()

Wyniki
print("Status:", LpStatus[model.status])
print("Minimalny koszt transportu (zł):", round(value(model.objective), 2))
print("\nWielkości dostaw (t):")
for p in plantatorzy:
 for s in punkty_skupu:
 print(f"{p} -> {s}: {round(x[p, s].value(), 2)} t")

Wynik:

Status: Optimal
Minimalny koszt transportu (zł): 6432.0

Wielkości dostaw (t):
P1 -> A: 0.0 t
P1 -> B: 12.0 t
P1 -> C: 0.0 t
P2 -> A: 12.0 t
P2 -> B: 0.0 t
P2 -> C: 18.0 t
P3 -> A: 6.0 t

2026/01/24 22:08 25/25 Badania operacyjne: Programowanie Liniowe ćwiczenia

made by Kacper Ostrowski 25/25

P3 -> B: 0.0 t
P3 -> C: 0.0 t

	Badania operacyjne: Programowanie Liniowe ćwiczenia
	Krótka historia
	Podstawowe pojęcia

	Jak zainstalować Solver
	Przykład problemu produkcyjnego – "Lampy"
	Zmienna decyzyjna
	Funkcja celu
	Ograniczenia
	Model matematyczny
	Rozwiązanie problemu lamp – Excel i Python
	Rozwiązanie w Excelu (Dodatek Solver)
	Krok po kroku:

	Rozwiązanie w Pythonie (biblioteka `PuLP`)
	Przykładowy kod:
	Wynik

	Przykład problemu produkcyjnego – Rajstopy
	Treść zadania
	Zmienna decyzyjna
	Funkcja celu
	Ograniczenia
	Model matematyczny
	Komentarz
	Rozwiązanie w Pythonie (biblioteka `PuLP`)
	Przykładowy kod:
	Nagłówek

	Przykład problemu produkcyjnego – "Lampy"
	Dane wejściowe
	Zmienna decyzyjna
	Funkcja celu
	Ograniczenia czasowe (przeliczone na minuty)
	Model matematyczny
	Cel zadania
	Rozwiązanie w Pythonie (biblioteka `PuLP`)
	Przykładowy kod:
	Wynik

	Przykład problemu produkcyjnego – kapelusze
	Treść zadania
	Zmienna decyzyjna
	Funkcja celu
	Ograniczenia
	Model matematyczny
	Cel zadania
	Rozwiązanie w Pythonie (biblioteka `PuLP`)
	Przykładowy kod:
	Wynik:

	Przykład problemu produkcyjnego – Pani Zuzia
	Treść zadania
	Zmienna decyzyjna
	Funkcja celu
	Ograniczenia zasobów
	Model matematyczny
	Cel zadania
	Rozwiązanie w Pythonie (biblioteka `PuLP`)
	Przykładowy kod:
	Wynik:

	Przykład Minimalizacyjny Ogrzewanie pomieszczeń
	Dane wejściowe
	Zmienne decyzyjne
	Funkcja celu
	Ograniczenia
	Cel
	Rozwiązanie
	Rozwiązanie w Pythonie (biblioteka `PuLP`)
	Przykładowy kod:
	Wynik:

	Problem transportowy - Transport mieszanki soli i piasku
	Dane wejściowe
	Tabela kosztów transportu i zapotrzebowań
	Pojemności składnic

	Zmienne decyzyjne
	Funkcja celu
	Ograniczenia
	Cel
	Uwagi
	Rozwiązanie w Pythonie (biblioteka `PuLP`)
	Przykładowy kod:
	Wynik
	Kod bez dynamicznego generowania ograniczeń i transportów

	Transport truskawek
	Dane wejściowe
	Tabela kosztów transportu (w zł za 1 tonę)

	Zmienne decyzyjne
	Funkcja celu
	Ograniczenia
	Cel
	Uwagi
	Kod
	Wynik:

