2026/01/24 22:07 1/5 C++: Poréwnanie wydajnosci sortowan

C++: Poréwnanie wydajnosci sortowan

Bubble Sort lterations: 80
Selection Sort iterations: 190
Insertion Sort iterations: 19

Dane Do Posortowania: 1,8,7,5,6,3,4921.6,7.5,8,3,1,6,7.5,9

Dane Posortowane: 1,1.1,23,3,45,556667 778899

TChart

220 4
180 B Bubble Sort

200 - O Selection Sort
H Insettion Sort

180 -

160 4
140 -
120 4
100 -

g
G
40
20

Sortuj

pliki:
e sorting_graphs.zip

kod:

main.cpp

#include <vcl.h>
#pragma hdrstop

#include "Unit2.h"
#include <string>

made by Kacper Ostrowski 1/5

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Asort_cpp_embarcadero&media=narzedzia:pasted:20250508-003631.png
https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Asort_cpp_embarcadero&media=narzedzia:pasted:20250508-003640.png
https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=narzedzia:sort_cpp_embarcadero&codeblock=0

2026/01/24 22:07 2/5 C++: Poréwnanie wydajnosci sortowan

#pragma package(smart init)
#pragma resource "*.dfm"
TForm2 *Form2;

__fastcall TForm2::TForm2(TComponent* Owner
: TForm(Owner

//AllocConsole();
//freopen("CONIN$", "r", stdin);
//freopen("CONOUT$", "w", stdout);
//freopen("CONOUTS$", "w", stderr);

int iterationsBubble;

int* bubbleSort(int arr[], int size
iterationsBubble = 0;

for (int 1 = 0; 1 < size; ++i
for (int j = 0; j < size - 1i; ++]j

if (arr[j] > arr[j + 1
// Swap elements if they are in the wrong order
int temp = arr(j/l;
arrljl = arr[j + 11;
arrij + 1] = temp;
iterationsBubble++;

//ShowMessage("Bubble Sort Iterations: " +
IntToStr(iterationsBubble));

return arr; // Return the sorted array

int iterationsSelection;

int* selectionSort(int arr[], int size
iterationsSelection = 0;
for (int i = 0; i < size - 1; ++i
int minIndex = 1i;

// Find the index of the minimum element in the unsorted part
of the array
for (int j =1 + 1; j < size; ++]
17 (arr[j] < arr[minIndex

made by Kacper Ostrowski 2/5

2026/01/24 22:07 3/5 C++: Poréwnanie wydajnosci sortowan

minIndex = j;

iterationsSelection ++;

// Swap the found minimum element with the first element
int temp = arr(i];

arrii] = arr[minIndex;

arr[minIndex| = temp;

return arr; // Return the sorted array

int iterationsInsertion;

int* insertionSort(int arr[], int size
iterationsInsertion = 0;
for (int 1 = 1; 1 < size; ++i
int key = arr[i];
int j =1 - 1;

// Move elements greater than key to
//one position ahead of their current position
while (j >= 0 && arr[j] > key

arrij + 1] = arr(jl;
j=13-1
arrlj + 11 = key;

iterationsInsertion++;

return arr; // Return the sorted array

/*
String intArrayToString(int arr[], int size) {
String result = "";
for (int 1 = 0; 1 < size; ++i) {
if (i >0) {
result += ",";
}
result += IntToStr(arr[i]);
}
return result;
}
*/

made by Kacper Ostrowski 3/5

2026/01/24 22:07 4/5 C++: Poréwnanie wydajnosci sortowan

void fastcall TForm2::SortButtonClick(TObject *Sender

String strData = DataTextBox->Text;
std::cout << AnsiString(strData).c str() << std::endl;

int counter = 0;
int i = 1; 1 <= strData.Length(); i++

strData/i] == "',
counter++;

std::cout << AnsiString(counter+l).c str() << std::endl;

// Dynamically allocate memory for intDataArray
int* intDataArray = new int|[counter + 1];

// Initialize the array elements to avoid garbage values
int 1 = 0; 1 <= counter; ++i
intDataArray[i] = 0; // You can use any default value here

int numElement = 0;
String element = "";
int x = 0;
int 1 = 1; i <= strData.Length(); i++
X = 1;
strData/i] == ',
numElement++;
intDataArray numElement| = StrTolInt(element);

std::cout << AnsiString("element:"+element).c str() <<

std::endl;
element = ""; // Reset element for the next iteration
== strData.Length
element += strDatalil;
numElement++;
intDataArray/numElement| = StrToInt(element);
std::cout << AnsiString("element:"+element).c str() <<
std::endl;

element = . // Reset element for the next iteration

element += strDatalil;

int arraySize = counter + 1;

made by Kacper Ostrowski 4/5

2026/01/24 22:07 5/5 C++: Poréwnanie wydajnosci sortowan

int* sortedArray = bubbleSort(intDataArray, arraySize);
SortedDataTextBox->Text = "";
int i = 1; i <= arraySize; i++
SortedDataTextBox->Text += IntToStr(sortedArray(i]);
SortedDataTextBox->Text += ",";

selectionSort(intDataArray, arraySize);

insertionSort(intDataArray, arraySize);

ShowMessage("Bubble Sort Iterations: " + IntToStr(iterationsBubble

+ "\nSelection Sort iterations: "+IntToStr(iterationsSelection)+
"\nInsertion Sort iterations: "+IntToStr(iterationsInsertion));

Seriesl->AddXY (arraySize,iterationsBubble) ;
Series2->AddXY(arraySize,iterationsSelection);
Series2->AddXY(arraySize,iterationsInsertion);

//String arrayString = intArrayToString(sortedString, arraySize);

//SortedDataTextBox->Text = arrayString;

// Don't forget to release the dynamically allocated memory
delete| | intDataArray;

made by Kacper Ostrowski 5/5

	[C++: Porównanie wydajności sortowań]
	[C++: Porównanie wydajności sortowań]
	[C++: Porównanie wydajności sortowań]
	C++: Porównanie wydajności sortowań

