2026/01/24 22:07 1/7 PY: Symulator Wahadta Podwdjnego

PY: Symulator Wahadta Podwdjnego

¥,
Double Pendulum Simulation
3
2 -
l -
|
O -
_1 -
|
_2 -
_3 T T T T T
-3 -2 -1 0 1 2 3
Mass 1 I 1.0 Theta 1 1.571
Mass 2 I 1.0 Theta 2 1.571
Length 1 N 1.0

{ Length 2 N 1.0

Reset

A +Q= B

To nie jest zwykte wahadto — to wahadto podwadjne (ang. double pendulum), jeden z
najprostszych uktadow fizycznych pokazujacych zjawisko deterministycznego chaosu. Dwa
ramiona, dwie masy, grawitacja — a efekt to piekny, nieprzewidywalny taniec, w ktérym drobna
zmiana kata startowego potrafi catkowicie zmieni¢ przyszty ruch.

Co tu sie wtasciwie dzieje?

made by Kacper Ostrowski 1/7

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Apendulum_py&media=narzedzia:pednulum.gif

2026/01/24 22:07 2/7 PY: Symulator Wahadta Podwdjnego

Uktad sktada sie z dwoch punktowych mas zawieszonych na nierozciggliwych pretach. Ruch opisuje
sie czterema zmiennymi:

e \(\theta 1) - kat pierwszego ramienia wzgledem pionu,

\(\theta_2) - kat drugiego ramienia wzgledem pionu,

e \(\omega_1 = \dot{\theta} 1) - predkos¢ katowa pierwszego wahadta,
\(

\omega_2 = \dot{\theta} 2\) - predkos¢ katowa drugiego wahadta.

Réwnania ruchu pochodzg z zasad dynamiki Newtona albo bezposrednio z mechaniki Lagrange’a:

$$ \begin{align*} \delta &= \theta_2 - \theta_1 \\\ddot{\theta} 1 &= \frac{m_2 |_1 \omega_1"2
\sin\delta \cos\delta + m_2 g \sin\theta 2 \cos\delta + m_2 | 2 \omega 272 \sin\delta-(m_1+ m_2)g
\sin\theta_1}{(m_1+ m_2) 1 1-m_21 1\cos™2\delta} \\\ddot{\theta} 2 &= \frac{-(m_1+ m_2)1 1
\omega_ 172 \sin\delta + (m_1 + m_2) g \sin\theta 1 \cos\delta - m_2 | 2 \omega 2”2 \sin\delta
\cos\delta - (m_1 + m_2) g \sin\theta_2} {\left(\frac{l_2}{l_1} \right)(m_ 1+ m 2)1 1-m 211
\cos”2\delta)} \end{align*} $$ Wyglada dziko? Tak wtasnie wyglada fizyka nieliniowa :) Ruch
symulowany jest numerycznie (metodg Rungego-Kutty) i animowany z pomoca biblioteki
matplotlib w Pythonie. Kod pozwala interaktywnie zmienia¢: - masy obu odwaznikdw, - dtugosci
ramion, - katy poczatkowe. Kazde klikniecie to nowy dziwny swiat trajektorii. ===== Matematyczne
zaplecze: Runge-Kutta i mechanika Lagrange’a ===== Zanim komputer moze cokolwiek
zasymulowad, potrzebujemy dwdch rzeczy: **modelu fizycznego** (czyli réwnan) i **metody ich
rozwigzania**. Dla naszego podwdjnego wahadta: - model opisuje **mechanika Lagrange’a**, -
rozwigzanie daje **metoda Rungego-Kutty 4. rzedu (RK4)**, ---- === Mechanika Lagrange’a ===
Zamiast klasycznych sit z Il zasady Newtona, Lagrange korzysta z zasad energii. Wprowadzamy
funkcje **Lagrangian**; $$ L =T - V $$ Gdzie: - T — energia kinetyczna, - V — energia
potencjalna.

Dla uktadu o wspétrzednych uogdlnionych q_i, réwnania ruchu wyprowadza sie z tzw. rownan
Lagrange’a:

$$ \frac{d}{dt} \left(\frac{\partial L} {\partial \dot{q} i} \right) - \frac{\partial L} {\partial g_i} = 0 $$
W naszym przypadku: $q_1 = \theta 1%, $q 2 = \theta_2$ — katy ramion.

Energie uktadu wyrazajg sie nastepujgco:

- Energia kinetyczna:

$$ T =\frac{1}{2} m_11 172 \dot{\theta} 172 + \frac{1}{2} m_2 \left[| 172 \dot{\theta} 172 +
| 272 \dot{\theta} 272 + 21 11 2 \dot{\theta} 1 \dot{\theta} 2 \cos(\theta_1 - \theta 2) \right] $$

- Energia potencjalna (w polu grawitacyjnym):
$$V=-(Mm_1+m_2)gl 1\cos\theta 1-m_2 gl 2\cos\theta 2 $$

Podstawiamy do $L = T - V$, a nastepnie wstawiamy do réwnan Lagrange’a. W efekcie otrzymujemy
dwa nieliniowe réwnania rézniczkowe drugiego rzedu, ktére potem przeksztatcamy do uktadu réwnan
pierwszego rzedu.

made by Kacper Ostrowski 2/7

2026/01/24 22:07 3/7 PY: Symulator Wahadta Podwdjnego

Metoda Rungego-Kutty 4. rzedu (RK4)

Metoda RK4 pozwala numerycznie rozwigza¢ ukfad réwnan rézniczkowych pierwszego rzedu:

$$ \dot{y} = f(t, y), \quad y(t_ 0) = y_0 $$
Aby znalez¢ $y _{n+1}$ w punkcie $t {n+1} =t n + h$, obliczamy:

$$ \begin{aligned} k 1 &= f(t_n, y n)\\ k 2 &= f\left(t_n + \frac{h}{2}, y n + \frac{h} {2}k 1\right)
\\ k_3 &= f\left(t_n + \frac{h}{2}, y n + \frac{h}{2}k 2\right) \\k 4 &=f(t n + h,y n+ hk 3)\\
y {n+1} &=y n+\frac{h}{6}(k 1 + 2k 2 + 2k_3 + k_4) \end{aligned} $$

To usrednienie czterech oszacowah zmian stanu. Daje to doktadnos¢ lokalng rzedu
$\mathcal{O}(h"~5)$ i globalng rzedu $\mathcal{0}(h"4)$.

W naszym kodzie uzyto “solve_ivp()" z biblioteki “scipy", ktéra domysinie uzywa wersji RK45 —
adaptacyjnej metody z kontrolg btedu i dynamicznym doborem kroku.

Dlaczego to dziata

Uktad, ktéry modelujemy: - jest nieliniowy (katy i ich pochodne pojawiaja sie w funkcjach
trygonometrycznych), - wykazuje chaotyczne zachowanie (olbrzymia wrazliwos¢ na warunki
poczatkowe), - nie ma rozwiazan analitycznych — tylko symulacja numeryczna pozwala go
przeanalizowad.

Mechanika Lagrange'a pozwala zbudowac¢ poprawny fizycznie model oparty o zasady zachowania, a
metoda Rungego-Kutty pozwala ten model skutecznie i doktadnie zasymulowac na komputerze.

Linki dla ciekawskich

Mechanika Lagrange’a (EN)

Wikipedia: Chaos deterministyczny
Wikipedia: Double Pendulum

Interaktywny model online (MyPhysicsLab)
MyPhysicsLab — symulacje fizyczne online
Wolfram Demonstrations: Classical Mechanics
Lecture notes: Numerical Analysis, Oxford

Kod programu

double_pendulum.py

numpy np

made by Kacper Ostrowski 3/7

https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://pl.wikipedia.org/wiki/Chaos_deterministyczny
https://en.wikipedia.org/wiki/Double_pendulum
https://myphysicslab.com/pendulum/double-pendulum-en.html
https://www.myphysicslab.com/
https://demonstrations.wolfram.com/topic.html?topic=Classical+Mechanics
https://people.maths.ox.ac.uk/suli/numerical_analysis/
https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=narzedzia:pendulum_py&codeblock=0

2026/01/24 22:07 4/7 PY: Symulator Wahadta Podwdjnego

matplotlib.pyplot plt

matplotlib.animation FuncAnimation
matplotlib.widgets Slider, Button
scipy.integrate solve ivp

Constants and default parameters

g
Default parameters for masses, lengths and initial angles (in
radians)
default params
'ml':
m2':
‘11':
12

"thetal': np.pi /
‘theta2': np.pi /
‘omegal':
‘omega2':

double pendulum derivs(t, y, ml, m2, 11, 12):
"""Returns the derivatives for the double pendulum system.

y = [thetal, theta2, omegal, omega2]

thetal, theta2, omegal, omega2 y
delta = theta2 - thetal

denoml ml + m2) * 11 - m2 * 11 * np.cos(delta)**

domegal dt m2 * 11 * omegal**2 * np.sin(delta) * np.cos(delta) +
m2 * g * np.sin(theta2) * np.cos(delta) +
m2 * 12 * omega2**2 * np.sin(delta) -
ml + m2) * g * np.sin(thetal)) / denoml

denom?2 12 / 11) * denoml
domega2 dt - m2 * 12 * omega2**2 * np.sin(delta) * np.cos(delta

ml + m2) * g * np.sin(thetal) * np.cos(delta) -
ml + m2) * 11 * omegal**2 * np.sin(delta) -
ml + m2) * g * np.sin(theta2)) / denom2

omegal, omega2, domegal dt, domega2 dt

simulate(params, t max dt

"""Simulate the double pendulum motion with given parameters."""
t _span t _max

t eval np.arange t max, dt

yo params| 'thetal’ params| 'theta2’ params| 'omegal’

params| 'omega2’

made by Kacper Ostrowski 417

2026/01/24 22:07 5/7 PY: Symulator Wahadta Podwdjnego

sol = solve ivp(double pendulum derivs, t span, yO
args=(params| 'ml’ params| 'm2' params|'l1' params|'12'
t eval=t eval, method='RK45'
sol.t, sol.y

Initial simulation data

t, y = simulate(default params
thetal vals = y[0

theta2 vals = y[1

get positions(thetal, theta2, 11, 12):
"""Calculate positions of pendulum bobs.
x1 = 11 * np.sin(thetal
yl -11 * np.cos(thetal
x2 = x1 + 12 * np.sin(theta2
y2 = yl - 12 * np.cos(theta2

x1l, yl, x2, y2

Create the figure and the animation axes
fig, ax = plt.subplots(figsize=(8, 8
plt.subplots adjust(left=0.1, bottom=0.35
ax.set xlim(-3, 3

ax.set ylim(-3, 3

ax.set aspect('equal’

ax.set title('Double Pendulum Simulation'

Initialize line and bob markers

line ax.plot 'o-', lw=2

trace ax.plot ‘-', lw=1, color='gray' # Optional trace of
second bob

trace x, trace y

init

line.set data

trace.set data
line, trace

Animation update function

update(frame) :

thetal = thetal vals|frame

theta2 = theta2 vals|frame

x1l, yl, x2, y2 get positions(thetal, theta2
current params|'l1' current params|'12'

line.set data([0, x1, x2 0, yl, y2

trace x.append(x2

trace y.append(y2

trace.set datal(trace x, trace y

line, trace

Create sliders for initial parameters
axcolor ‘lightgoldenrodyellow’

made by Kacper Ostrowski 5/7

2026/01/24 22:07 6/7 PY: Symulator Wahadta Podwdjnego

ax_ ml = plt.axes([0.1, 0.25, 0.3, 0.03], facecolor=axcolor
ax_ m2 = plt.axes([0.1, 0.20, 0.3, 0.03], facecolor=axcolor
ax_ 11 = plt.axes([0.1, 0.15, 0.3, 0.03], facecolor=axcolor
ax 12 = plt.axes([0.1, 0.10, 0.3, 0.03], facecolor=axcolor
ax_thetal = plt.axes([0.6, 0.25, 0.3, 0.03], facecolor=axcolor
ax_theta2 = plt.axes([0.6, 0.20, 0.3, 0.03], facecolor=axcolor

slider ml = Slider(ax ml, 'Mass 1', 0.1, 5.0
valinit=default params/|'ml’

slider m2 = Slider(ax m2, 'Mass 2', 0.1, 5.0
valinit=default params| 'm2'

slider 11 = Slider(ax 11, 'Length 1', 0.5, 3.0
valinit=default params/|'l1'

slider 12 = Slider(ax_l2, 'Length 2', 0.5, 3.0
valinit=default params|'l2’

slider thetal = Slider(ax thetal, 'Theta 1', 0, 2*np.pi
valinit=default params|'thetal’

slider theta2 = Slider(ax theta2, 'Theta 2', 0, 2*np.pi
valinit=default params|'theta2’

Dictionary to hold current simulation parameters
current params default params.copy

update simulation(val
"""Update simulation based on slider values."""

t, y, thetal vals, theta2 vals, trace x, trace y

current params

Update current parameters from sliders

current params|'ml’ slider ml.val

current params| 'm2' slider m2.val

current params|'l1' slider 11.val

current params|'12' slider 12.val

current params|'thetal'’ slider_thetal.val
current _params|'theta2’ slider_ theta2.val
current params| 'omegal'’ 0.0

current params| 'omega2’ 0.0

Re-run the simulation with new parameters
t, y = simulate(current params

thetal vals = y[0

theta2 vals = y[1

Clear the trace and reset animation frame index
trace x.clear

trace y.clear

ani.frame seq = ani.new frame_ seq
fig.canvas.draw idle

Call update simulation when any slider value changes
slider ml.on changed(update simulation

made by Kacper Ostrowski

6/7

2026/01/24 22:07 717 PY: Symulator Wahadta Podwdjnego

slider m2.on changed(update simulation
slider 11l.on changed(update simulation
slider 12.on changed(update simulation
slider thetal.on changed(update simulation
slider theta2.on changed(update simulation

Button to reset sliders to default values

reset ax = plt.axes

button reset = Button(reset ax, 'Reset', color=axcolor
hovercolor='0.975"

reset(event

slider ml.reset
slider m2.reset
slider 11.reset
slider 12.reset
slider_ thetal.reset
slider_theta2.reset

button reset.on clicked(reset
Create the animation
ani FuncAnimation(fig, update, frames=len(t init func=init

interval blit=True

plt.show

made by Kacper Ostrowski 717

	[PY: Symulator Wahadła Podwójnego]
	PY: Symulator Wahadła Podwójnego
	Co tu się właściwie dzieje?
	Metoda Rungego-Kutty 4. rzędu (RK4)
	Dlaczego to działa
	Linki dla ciekawskich
	Kod programu

