
2026/01/24 22:08 1/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 1/11

C#: Packet Sniffer w C#

sniffer.exe

Poniżej jest instrukcja jak skorzystać z aplikacji

przed uruchomieniem może nam się wyświetlić takie okno,

jeżeli tak się stanie to pobieramy framework a potem idziemy dalej

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Apacket_sniffer&media=narzedzia:pasted:20250513-134247.png

2026/01/24 22:08 2/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 2/11

uruchamiamy aplikację z uprawnieniami administratora

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Apacket_sniffer&media=narzedzia:pasted:20250513-134303.png

2026/01/24 22:08 3/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 3/11

następnie wybieramy adres IP na którym będziemy nasłuchiwać

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Apacket_sniffer&media=narzedzia:pasted:20250513-134318.jpeg

2026/01/24 22:08 4/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 4/11

naciskamy przycisk start

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Apacket_sniffer&media=narzedzia:pasted:20250513-134340.png

2026/01/24 22:08 5/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 5/11

a potem oglądamy ruch sieciowy aplikacja powinna wyświetlać UDP TCP DNS

main.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Net.Sockets;
using System.Net;

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Apacket_sniffer&media=narzedzia:pasted:20250513-134349.png
https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=narzedzia:packet_sniffer&codeblock=0

2026/01/24 22:08 6/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 6/11

namespace MJsniffer
{
 public enum Protocol
 {
 TCP = 6,
 UDP = 17,
 Unknown = -1
 };

 public partial class MJsnifferForm : Form
 {
 private Socket mainSocket; // Socket który przechwytuje
wszystkie pakiety
 private byte[] byteData = new byte[4096];
 private bool bContinueCapturing = false; // flaga która
sprawdza czy pakiety zostały złapane poprawnie
 private delegate void AddTreeNode(TreeNode node);

 public MJsnifferForm()
 {
 InitializeComponent();
 }

 private void btnStart_Click(object sender, EventArgs e)
 {
 if (cmbInterfaces.Text == "")
 {
 MessageBox.Show("Select an Interface to capture the
packets.", "Sniffer",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 return;
 }

 try
 {
 if (!bContinueCapturing)
 {
 btnStart.Text = "&Stop";
 bContinueCapturing = true;

 mainSocket = new Socket(AddressFamily.InterNetwork,
SocketType.Raw, ProtocolType.IP);
 mainSocket.Bind(new
IPEndPoint(IPAddress.Parse(cmbInterfaces.Text), 0));

 mainSocket.SetSocketOption(SocketOptionLevel.IP,
SocketOptionName.HeaderIncluded, true);

 byte[] byTrue = new byte[4] { 1, 0, 0, 0 };
 byte[] byOut = new byte[4] { 1, 0, 0, 0 };

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

2026/01/24 22:08 7/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 7/11

 mainSocket.IOControl(IOControlCode.ReceiveAll,
byTrue, byOut);

 mainSocket.BeginReceive(byteData, 0,
byteData.Length, SocketFlags.None,
 new AsyncCallback(OnReceive), null);
 }
 else
 {
 btnStart.Text = "&Start";
 bContinueCapturing = false;
 mainSocket.Close();
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Sniffer",
MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }

 private void OnReceive(IAsyncResult ar)
 {
 try
 {
 int nReceived = mainSocket.EndReceive(ar);
 ParseData(byteData, nReceived);

 if (bContinueCapturing)
 {
 byteData = new byte[4096];
 mainSocket.BeginReceive(byteData, 0,
byteData.Length, SocketFlags.None,
 new AsyncCallback(OnReceive), null);
 }
 }
 catch (ObjectDisposedException) { }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Sniffer",
MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 }

 private void ParseData(byte[] byteData, int nReceived)
 {
 TreeNode rootNode = new TreeNode();
 IPHeader ipHeader = new IPHeader(byteData, nReceived);
 TreeNode ipNode = MakeIPTreeNode(ipHeader);
 rootNode.Nodes.Add(ipNode);

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

2026/01/24 22:08 8/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 8/11

 switch (ipHeader.ProtocolType)
 {
 case Protocol.TCP:
 TCPHeader tcpHeader = new TCPHeader(ipHeader.Data,
ipHeader.MessageLength);
 TreeNode tcpNode = MakeTCPTreeNode(tcpHeader);
 rootNode.Nodes.Add(tcpNode);

 if (tcpHeader.DestinationPort == "53" ||
tcpHeader.SourcePort == "53")
 {
 TreeNode dnsNode =
MakeDNSTreeNode(tcpHeader.Data, (int)tcpHeader.MessageLength);
 rootNode.Nodes.Add(dnsNode);
 }
 break;

 case Protocol.UDP:
 UDPHeader udpHeader = new UDPHeader(ipHeader.Data,
(int)ipHeader.MessageLength);
 TreeNode udpNode = MakeUDPTreeNode(udpHeader);
 rootNode.Nodes.Add(udpNode);

 if (udpHeader.DestinationPort == "53" ||
udpHeader.SourcePort == "53")
 {
 TreeNode dnsNode =
MakeDNSTreeNode(udpHeader.Data,
 Convert.ToInt32(udpHeader.Length) - 8);
 rootNode.Nodes.Add(dnsNode);
 }
 break;

 case Protocol.Unknown:
 break;
 }

 AddTreeNode addTreeNode = new AddTreeNode(OnAddTreeNode);
 rootNode.Text = ipHeader.SourceAddress.ToString() + " - " +
ipHeader.DestinationAddress.ToString();
 treeView.Invoke(addTreeNode, new object[] { rootNode });
 }

 private TreeNode MakeIPTreeNode(IPHeader ipHeader)
 {
 TreeNode ipNode = new TreeNode("IP");
 ipNode.Nodes.Add("Ver: " + ipHeader.Version);
 ipNode.Nodes.Add("Header Length: " +
ipHeader.HeaderLength);
 ipNode.Nodes.Add("Differentiated Services: " +
ipHeader.DifferentiatedServices);

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

2026/01/24 22:08 9/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 9/11

 ipNode.Nodes.Add("Total Length: " + ipHeader.TotalLength);
 ipNode.Nodes.Add("Identification: " +
ipHeader.Identification);
 ipNode.Nodes.Add("Flags: " + ipHeader.Flags);
 ipNode.Nodes.Add("Fragmentation Offset: " +
ipHeader.FragmentationOffset);
 ipNode.Nodes.Add("Time to live: " + ipHeader.TTL);

 string protocolStr = ipHeader.ProtocolType switch
 {
 Protocol.TCP => "TCP",
 Protocol.UDP => "UDP",
 _ => "Unknown"
 };
 ipNode.Nodes.Add("Protocol: " + protocolStr);

 ipNode.Nodes.Add("Checksum: " + ipHeader.Checksum);
 ipNode.Nodes.Add("Source: " +
ipHeader.SourceAddress.ToString());
 ipNode.Nodes.Add("Destination: " +
ipHeader.DestinationAddress.ToString());

 return ipNode;
 }

 private TreeNode MakeTCPTreeNode(TCPHeader tcpHeader)
 {
 TreeNode tcpNode = new TreeNode("TCP");
 tcpNode.Nodes.Add("Source Port: " + tcpHeader.SourcePort);
 tcpNode.Nodes.Add("Destination Port: " +
tcpHeader.DestinationPort);
 tcpNode.Nodes.Add("Sequence Number: " +
tcpHeader.SequenceNumber);

 if (!string.IsNullOrEmpty(tcpHeader.AcknowledgementNumber))
 tcpNode.Nodes.Add("Acknowledgement Number: " +
tcpHeader.AcknowledgementNumber);

 tcpNode.Nodes.Add("Header Length: " +
tcpHeader.HeaderLength);
 tcpNode.Nodes.Add("Flags: " + tcpHeader.Flags);
 tcpNode.Nodes.Add("Window Size: " + tcpHeader.WindowSize);
 tcpNode.Nodes.Add("Checksum: " + tcpHeader.Checksum);

 if (!string.IsNullOrEmpty(tcpHeader.UrgentPointer))
 tcpNode.Nodes.Add("Urgent Pointer: " +
tcpHeader.UrgentPointer);

 return tcpNode;
 }

http://www.google.com/search?q=new+msdn.microsoft.com

2026/01/24 22:08 10/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 10/11

 private TreeNode MakeUDPTreeNode(UDPHeader udpHeader)
 {
 TreeNode udpNode = new TreeNode("UDP");
 udpNode.Nodes.Add("Source Port: " + udpHeader.SourcePort);
 udpNode.Nodes.Add("Destination Port: " +
udpHeader.DestinationPort);
 udpNode.Nodes.Add("Length: " + udpHeader.Length);
 udpNode.Nodes.Add("Checksum: " + udpHeader.Checksum);
 return udpNode;
 }

 private TreeNode MakeDNSTreeNode(byte[] byteData, int nLength)
 {
 DNSHeader dnsHeader = new DNSHeader(byteData, nLength);
 TreeNode dnsNode = new TreeNode("DNS");
 dnsNode.Nodes.Add("Identification: " +
dnsHeader.Identification);
 dnsNode.Nodes.Add("Flags: " + dnsHeader.Flags);
 dnsNode.Nodes.Add("Questions: " +
dnsHeader.TotalQuestions);
 dnsNode.Nodes.Add("Answer RRs: " +
dnsHeader.TotalAnswerRRs);
 dnsNode.Nodes.Add("Authority RRs: " +
dnsHeader.TotalAuthorityRRs);
 dnsNode.Nodes.Add("Additional RRs: " +
dnsHeader.TotalAdditionalRRs);
 return dnsNode;
 }

 private void OnAddTreeNode(TreeNode node)
 {
 treeView.Nodes.Add(node);
 }

 private void SnifferForm_Load(object sender, EventArgs e)
 {
 string strIP = null;
 IPHostEntry hostEntry =
Dns.GetHostEntry(Dns.GetHostName());

 if (hostEntry.AddressList.Length > 0)
 {
 foreach (IPAddress ip in hostEntry.AddressList)
 {
 strIP = ip.ToString();
 cmbInterfaces.Items.Add(strIP);
 }
 }
 }

 private void SnifferForm_FormClosing(object sender,

http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com
http://www.google.com/search?q=new+msdn.microsoft.com

2026/01/24 22:08 11/11 C#: Packet Sniffer w C#

made by Kacper Ostrowski 11/11

FormClosingEventArgs e)
 {
 if (bContinueCapturing)
 {
 mainSocket.Close();
 }
 }

 private void treeView_AfterSelect(object sender,
TreeViewEventArgs e) { }

 private void label1_Click(object sender, EventArgs e) { }
 }
}

	C#: Packet Sniffer w C#

