
2026/01/24 22:08 1/4 PY: Topology mapper Hyper-V

made by Kacper Ostrowski 1/4

skrypt do pobrania:

python_hyper-v_topology_grapher.py

PY: Topology mapper Hyper-V

Wprowadzenie

Poniższy kod umożliwia pobieranie informacji o przełącznikach wirtualnych (VMSwitches) oraz
adapterach sieciowych maszyn wirtualnych (VMNetworkAdapters) w systemie Hyper-V. Następnie
buduje on graf, gdzie węzły to przełączniki wirtualne oraz maszyny wirtualne, a krawędzie
reprezentują połączenia między tymi elementami. Całość jest wizualizowana przy użyciu biblioteki
Matplotlib.

Zawartość Programu

Program składa się z kilku funkcji, które realizują różne zadania:

1. Funkcja get_vmswitches

def get_vmswitches():
 """
 Use PowerShell to get Hyper-V virtual switches as JSON.
 """
 cmd = ["powershell", "-Command", "Get-VMSwitch | ConvertTo-Json"]
 proc = subprocess.run(cmd, capture_output=True, text=True)
 try:
 switches = json.loads(proc.stdout)
 except json.JSONDecodeError as e:
 print("Error decoding JSON for switches:", e)
 print("PowerShell output was:", proc.stdout)
 switches = []
 # Ensure the data is a list
 if isinstance(switches, dict):
 switches = [switches]
 return switches

Funkcja ta używa PowerShella do pobrania informacji o przełącznikach wirtualnych w systemie Hyper-
V, a następnie konwertuje wynik na format JSON. Jeśli dekodowanie JSON zakończy się
niepowodzeniem, wypisuje komunikat o błędzie i zwraca pustą listę. Jeśli dane nie są w formie listy,
funkcja konwertuje je na listę.

2026/01/24 22:08 2/4 PY: Topology mapper Hyper-V

made by Kacper Ostrowski 2/4

2. Funkcja get_vmnetworkadapters

def get_vmnetworkadapters():
 """
 Use PowerShell to get Hyper-V VM network adapters as JSON.
 This version pipes all VMs to Get-VMNetworkAdapter to ensure we get
data.
 """
 # Updated command to get network adapters from all VMs
 cmd = ["powershell", "-Command", "Get-VM | Get-VMNetworkAdapter |
ConvertTo-Json"]
 proc = subprocess.run(cmd, capture_output=True, text=True)
 if proc.stderr:
 print("PowerShell error output:", proc.stderr)
 try:
 adapters = json.loads(proc.stdout)
 except json.JSONDecodeError as e:
 print("Error decoding JSON for adapters:", e)
 print("PowerShell output was:", proc.stdout)
 adapters = []
 # Ensure the data is a list
 if isinstance(adapters, dict):
 adapters = [adapters]
 return adapters

Ta funkcja działa podobnie do poprzedniej, ale zamiast przełączników wirtualnych, pobiera dane o
adapterach sieciowych maszyn wirtualnych w Hyper-V. W przypadku błędów podczas dekodowania
JSON, wypisuje komunikat o błędzie i zwraca pustą listę.

3. Funkcja build_graph

def build_graph(switches, adapters):
 """
 Build a graph with virtual switches as one type of node and VMs as
another.
 An edge represents a connection between a VM and a virtual switch.
 """
 G = nx.Graph()

 # Add virtual switch nodes
 for sw in switches:
 sw_name = sw.get("Name")
 if sw_name:
 G.add_node(sw_name, type="switch")

 # Add VM nodes and edges based on network adapter connections
 for adapter in adapters:
 vm_name = adapter.get("VMName")
 switch_name = adapter.get("SwitchName")

2026/01/24 22:08 3/4 PY: Topology mapper Hyper-V

made by Kacper Ostrowski 3/4

 if vm_name:
 G.add_node(vm_name, type="vm")
 # Create an edge if the adapter is connected to a switch
 if switch_name:
 G.add_edge(vm_name, switch_name)
 return G

Funkcja ta tworzy graf przy użyciu biblioteki NetworkX. Dodaje węzły do grafu reprezentujące
przełączniki wirtualne (o typie „switch”) oraz maszyny wirtualne (o typie „vm”). Krawędzie grafu
tworzone są pomiędzy maszynami wirtualnymi a przełącznikami wirtualnymi, jeśli adapter sieciowy
jest podłączony do danego przełącznika.

4. Funkcja draw_graph

def draw_graph(G):
 """
 Draw the graph using matplotlib.
 Switches are drawn as squares (blue) and VMs as circles (green).
 """
 pos = nx.spring_layout(G, k=1.0, iterations=100, seed=42) # For
consistent layout

 # Separate nodes by type for custom styling
 switch_nodes = [n for n, d in G.nodes(data=True) if d.get("type") ==
"switch"]
 vm_nodes = [n for n, d in G.nodes(data=True) if d.get("type") == "vm"]

 plt.figure(figsize=(10, 8))
 nx.draw_networkx_nodes(G, pos, nodelist=switch_nodes,
node_color='lightblue', node_shape='s',
 node_size=1500, label="Virtual Switch")
 nx.draw_networkx_nodes(G, pos, nodelist=vm_nodes,
node_color='lightgreen', node_shape='o',
 node_size=1500, label="Virtual Machine")
 nx.draw_networkx_edges(G, pos)
 nx.draw_networkx_labels(G, pos, font_size=10)

 plt.title("Hyper-V Topology: Virtual Switches & VMs")
 plt.axis('off')
 plt.legend(scatterpoints=1, labelspacing=1.5, handletextpad=1.0,
borderaxespad=1.0)
 plt.tight_layout()
 plt.show()

Funkcja ta odpowiada za wizualizację grafu za pomocą biblioteki Matplotlib. Węzły reprezentujące
przełączniki wirtualne są rysowane jako niebieskie kwadraty, a węzły reprezentujące maszyny
wirtualne jako zielone okręgi. Krawędzie grafu reprezentują połączenia między przełącznikami a
maszynami wirtualnymi.

2026/01/24 22:08 4/4 PY: Topology mapper Hyper-V

made by Kacper Ostrowski 4/4

5. Funkcja main

def main():
 print("Extracting Hyper-V virtual switches...")
 switches = get_vmswitches()
 print(f"Found {len(switches)} switch(es).")

 print("Extracting Hyper-V VM network adapters...")
 adapters = get_vmnetworkadapters()
 print(f"Found {len(adapters)} network adapter(s).")

 if not switches and not adapters:
 print("No data retrieved. Ensure Hyper-V is installed and you have
proper permissions.")
 return

 graph = build_graph(switches, adapters)
 draw_graph(graph)

Funkcja `main` uruchamia proces zbierania danych o przełącznikach wirtualnych i adapterach
sieciowych maszyn wirtualnych, a następnie buduje i rysuje graf przedstawiający te dane. Funkcja ta
jest punktem wejścia programu i jest uruchamiana, gdy program jest wykonywany bezpośrednio.

6. Wywołanie programu

if __name__ == "__main__":
 main()

Jest to standardowy sposób uruchamiania programu w Pythonie. Jeżeli skrypt jest uruchamiany
bezpośrednio, wywoływana jest funkcja `main()`, która rozpoczyna cały proces.

Podsumowanie

Kod służy do pobierania danych o przełącznikach wirtualnych i adapterach sieciowych maszyn
wirtualnych w systemie Hyper-V, budowania grafu przedstawiającego te elementy, a następnie
wizualizowania tego grafu za pomocą biblioteki Matplotlib. Używa on PowerShella do pozyskiwania
danych oraz NetworkX do manipulacji grafem.

	PY: Topology mapper Hyper-V
	Wprowadzenie
	Zawartość Programu
	1. Funkcja get_vmswitches
	2. Funkcja get_vmnetworkadapters
	3. Funkcja build_graph
	4. Funkcja draw_graph
	5. Funkcja main
	6. Wywołanie programu
	Podsumowanie

