
2026/01/24 22:07 1/7 PY: Fraktale w pythonie

made by Kacper Ostrowski 1/7

PY: Fraktale w pythonie

Wikipedia: L-systems

fractal_ardugeek.py

import turtle
import time

Configuration
FONT = ("Arial", 48, "bold")
LETTER_SPACING = 65
ANIMATION_DELAY = 0.5 # seconds between drawing each letter
FRACTAL_ITER = 2 # reduced iterations for faster drawing
FRACTAL_SCALE = 10 # scaling factor for fractal drawing

L-system definitions for each letter (axiom, rules, angle)
8 distinct fractals for 8 letters in "ArduGeek"
L_SYSTEMS = [

https://en.wikipedia.org/wiki/L-system
https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Afraktale_python&media=pythonw_dgrsk9lafw.gif
https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=narzedzia:fraktale_python&codeblock=0

2026/01/24 22:07 2/7 PY: Fraktale w pythonie

made by Kacper Ostrowski 2/7

 ("F", {"F": "F+F--F+F"}, 60), # Koch curve
 ("FX", {"X": "X+YF+", "Y": "-FX-Y"}, 90), # Dragon curve
 ("F-G-G", {"F": "F-G+F+G-F", "G": "GG"}, 120), # Sierpinski
triangle
 ("X", {"X": "F-[[X]+X]+F[+FX]-X", "F": "FF"}, 25),# Fractal plant
 ("A", {"A": "B-A-B", "B": "A+B+A"}, 60), # Arrowhead curve
 ("X", {"X": "X+YF++YF-FX--FXFX-YF+", "Y": "-FX+YFYF++YF+FX--FX-Y"},
90), # Gosper curve
 ("F+F+F+F", {"F": "F+F-F-F+F"}, 90), # Smaller
square Koch variant
 ("F", {"F": "F+F-F"}, 120) # Terdragon curve for an intricate,
compact design
]

Setup screen and turtles
def setup():
 screen = turtle.Screen()
 screen.title("ArduGeek with Persistent Fractals")
 screen.bgcolor("white")

 pen = turtle.Turtle()
 pen.hideturtle()
 pen.penup()
 pen.speed(1)
 pen.color("darkblue")

 fractal_t = turtle.Turtle()
 fractal_t.hideturtle()
 fractal_t.penup()
 fractal_t.speed(0)
 fractal_t.color("gray")

 return screen, pen, fractal_t

Generate L-system string
def generate_lsystem(axiom, rules, iterations):
 s = axiom
 for _ in range(iterations):
 s = ''.join(rules.get(ch, ch) for ch in s)
 return s

Draw L-system with given turtle
def draw_lsystem(t, instructions, angle, scale):
 for cmd in instructions:
 if cmd in ('F', 'G'):
 t.forward(scale)
 elif cmd == '+':
 t.right(angle)
 elif cmd == '-':
 t.left(angle)
 elif cmd == '[':

2026/01/24 22:07 3/7 PY: Fraktale w pythonie

made by Kacper Ostrowski 3/7

 stack.append((t.position(), t.heading()))
 elif cmd == ']':
 pos, head = stack.pop()
 t.penup()
 t.goto(pos)
 t.setheading(head)
 t.pendown()

Main animation: draw each fractal once, then write letters on top
def animate_text_with_fractals(screen, pen, fractal_t, text):
 # center the text on screen
 total_width = len(text) * FONT[1] * 0.6 + (len(text)-1) *
LETTER_SPACING
 start_x = -total_width / 2
 baseline_y = 0
 pen.goto(start_x, baseline_y)

 # draw persistent fractals behind each letter
 for i, letter in enumerate(text):
 axiom, rules, angle = L_SYSTEMS[i]
 inst = generate_lsystem(axiom, rules, FRACTAL_ITER)
 fractal_t.penup()
 # align each fractal under its letter
 fractal_t.goto(start_x + i*(FONT[1]*0.6 + LETTER_SPACING),
baseline_y - FONT[1]*0.6)
 fractal_t.setheading(90) # align fern and others upright
 fractal_t.pendown()
 global stack
 stack = []
 draw_lsystem(fractal_t, inst, angle, FRACTAL_SCALE)
 fractal_t.penup()

 # write all letters on top, one by one
 pen.goto(start_x, baseline_y)
 for letter in text:
 pen.write(letter, font=FONT, align="left")
 pen.forward(FONT[1]*0.6 + LETTER_SPACING)
 time.sleep(ANIMATION_DELAY)

if __name__ == '__main__':

 screen, pen, fractal_t = setup()
 input()
 animate_text_with_fractals(screen, pen, fractal_t, "ArduGeek")
 pen.penup()
 screen.mainloop()

2026/01/24 22:07 4/7 PY: Fraktale w pythonie

made by Kacper Ostrowski 4/7

fractal_plant.py

from turtle import *

tracer(0)
start="X"
dlugosc=4
kat=25

stos=[]
slZam={'X':'F+[[X]-X]-F[-FX]+X','F':'FF'}

iteracje=6
zolw='zolw'

def LSBuduj(st,ile,sl):
 nowy=""
 for litera in st:
 if litera in st:
 if litera in sl.keys():
 nowy+=sl[litera]
 else:
 nowy+=litera

 if ile>1:
 ile-=1

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Afraktale_python&media=narzedzia:fractal_plant.jpg
https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=narzedzia:fraktale_python&codeblock=1

2026/01/24 22:07 5/7 PY: Fraktale w pythonie

made by Kacper Ostrowski 5/7

 return LSBuduj(nowy,ile,sl)
 else:
 return nowy
DoWykonania=LSBuduj(start,iteracje,slZam)
Polecenia={}
Polecenia['F']=[zolw+'.pd()',zolw+'.fd('+str(dlugosc)+')']
Polecenia['+']=[zolw+'.right('+str(kat)+')']
Polecenia['-']=[zolw+'.left('+str(kat)+')']
Polecenia['[']=['stos.append(('+zolw+'.xcor(),'+zolw+'.ycor(),'+zolw+'.
heading()))']
Polecenia[']']=[zolw+'.pu()',zolw+'.setx(stos[len(stos)-1][0])',
 zolw+'.sety(stos[len(stos)-1][1])',
 zolw+'.setheading(stos[len(stos)-1][2])',
 'stos.pop()']

print(Polecenia)

zolw=Turtle()
zolw.pu()
zolw.goto(0,-300)
zolw.color('green')
zolw.pd()
zolw.setheading(90)
zolw.speed(0)
for litera in DoWykonania:
 if litera in Polecenia.keys():
 for rozkaz in Polecenia[litera]:
 eval(rozkaz)
update()

binary_tree.py

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Afraktale_python&media=narzedzia:binarytree.png
https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=narzedzia:fraktale_python&codeblock=2

2026/01/24 22:07 6/7 PY: Fraktale w pythonie

made by Kacper Ostrowski 6/7

import turtle as t
t.speed(0)
t.pensize(2)
t.left(90)
t.backward(100)
t.color("green")

def draw(l):
 if(l<10):
 return
 else:
 t.forward(l)
 t.color("red")
 t.circle(2)
 t.color("green")
 t.left(45)
 draw(3*l/4)
 t.right(90)
 draw(3*l/4)
 t.left(45)
 t.backward(l)

draw(25)
t.exitonclick()

siepinsky_triangle.py

from turtle import *

start="F-G-G"

https://wiki.ostrowski.net.pl/lib/exe/detail.php?id=narzedzia%3Afraktale_python&media=narzedzia:pasted:20250508-161954.png
https://wiki.ostrowski.net.pl/doku.php?do=export_code&id=narzedzia:fraktale_python&codeblock=3

2026/01/24 22:07 7/7 PY: Fraktale w pythonie

made by Kacper Ostrowski 7/7

dlugosc=5
kat=120

slownik={}
slownik['G']="GG"
slownik['F']="F-G+F+G-F"

iteracje=10
zolw='zolw'

def LSBuduj(st,ile,sl):
 nowy=""
 for litera in st:
 if litera in slownik.keys():
 nowy+=sl[litera]
 else:
 nowy+=litera

 if ile>1:
 ile-=1
 return LSBuduj(nowy,ile,sl)
 else:
 return nowy

#print(len(LSBuduj(start,iteracje,slownik)))

DoWykonania=LSBuduj(start,iteracje,slownik)

Polecenia={}
Polecenia["G"]=[zolw+".fd("+str(dlugosc)+")"]
Polecenia["F"]=[zolw+".fd("+str(dlugosc)+")"]
Polecenia["+"]=[zolw+".left("+str(kat)+")"]
Polecenia["-"]=[zolw+".right("+str(kat)+")"]

zolw=Turtle()
zolw.pu()
zolw.goto(-300,200)
zolw.color('purple')
zolw.pd()
zolw.speed(0)
for litera in DoWykonania:
 if litera in Polecenia.keys():
 for rozkaz in Polecenia[litera]:
 eval(rozkaz)

	PY: Fraktale w pythonie

