
2026/01/27 07:38 1/2 PY: Skrypt NAT port knocking z uwierzytelnieniem

made by Kacper Ostrowski 1/2

template login.html

Kod samego programu

from flask import Flask, request, render_template
import paramiko
import time
import re
MikroTik API credentials
ROUTER_IP = '192.168.1.1'
USERNAME = 'admin'
PASSWORD = 'PASS'

app = Flask(__name__)

Configure Flask to trust X-Forwarded-For header
app.config['TRUSTED_PROXIES'] = '127.0.0.1'

def remove_port(ip_address_with_port):
 return re.split(r'[;,|:]',ip_address_with_port)

Function to add IP address to the specified list with a timeout
def add_to_list(ip_address_arg):
 ip_address = remove_port(ip_address_arg)[0]
 ssh = paramiko.SSHClient()
 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 ssh.connect(ROUTER_IP,port=22, username=USERNAME, password=PASSWORD)

 # Send command to add IP address to address list
 command = f"/ip firewall address-list add list=port_knocking_stage1
address={ip_address} timeout=12h"
 stdin, stdout, stderr = ssh.exec_command(command)

 # Wait for the command to execute
 time.sleep(1)

 # Check for any errors
 if stderr.read().decode():
 print("Error:", stderr.read().decode())
 else:
 print("IP address added successfully. "+ip_address)

 ssh.close()
Dummy database for demonstration (replace with your own authentication
mechanism)
users = {
 'admin': 'pass',

2026/01/27 07:38 2/2 PY: Skrypt NAT port knocking z uwierzytelnieniem

made by Kacper Ostrowski 2/2

}

Authentication route
@app.route('/', methods=['GET', 'POST'])
def login():
 error = None
 if request.method == 'POST':
 username = request.form['username']
 password = request.form['password']
 if username in users and users[username] == password:
 user_ip = request.headers.get('X-Forwarded-For',
request.remote_addr)
 add_to_list(user_ip)
 add_to_list(user_ip)
 success_message = 'Authenticated successfully! Your IP address
{} has been added to the whitelist for 12
hours.'.format(remove_port(user_ip)[0])
 return '<div style="font-family: Arial, sans-serif; text-align:
center; margin-top: 50px;"><h2 style="color:
#4CAF50;">Success!</h2><p>{}</p></div>'.format(success_message)
 else:
 error = 'Invalid credentials. Please try again.'
 return render_template('login.html', error=error)

if __name__ == '__main__':
 app.run(debug=False)

	[template login.html]
	[template login.html]
	[template login.html]
	template login.html
	Kod samego programu

