Różnice między wybraną wersją a wersją aktualną.
Poprzednia rewizja po obu stronachPoprzednia wersjaNowa wersja | Poprzednia wersja | ||
notatki:studianoteaptaszniml [2025/05/07 13:49] – administrator | notatki:studianoteaptaszniml [2025/05/16 17:27] (aktualna) – administrator | ||
---|---|---|---|
Linia 1: | Linia 1: | ||
- | ======= | + | ======= |
- | ====== Wprowadzenie do Pythona ====== | ||
- | |||
- | ==== Typy proste ==== | ||
- | |||
- | ==== Typy zlożone ==== | ||
- | |||
- | <code python> | ||
- | 6*7 | ||
- | </ | ||
- | |||
- | < | ||
- | 42 | ||
- | </ | ||
- | |||
- | <code python> | ||
- | _ | ||
- | </ | ||
- | |||
- | < | ||
- | 42 | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm=_ | ||
- | print(zm, | ||
- | </ | ||
- | |||
- | < | ||
- | 42 <class ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm.__dir__() | ||
- | </ | ||
- | |||
- | < | ||
- | [' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm=7*6.4 | ||
- | print(zm, | ||
- | </ | ||
- | |||
- | < | ||
- | 44.800000000000004 <class ' | ||
- | </ | ||
- | |||
- | ====== Typy złożone ====== | ||
- | |||
- | <code python> | ||
- | #Lista | ||
- | </ | ||
- | |||
- | <code python> | ||
- | lista=list() | ||
- | print(lista, | ||
- | </ | ||
- | |||
- | < | ||
- | [] <class ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | lista.append(' | ||
- | print(lista, | ||
- | </ | ||
- | |||
- | < | ||
- | [' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | lista=[1, | ||
- | print(lista, | ||
- | </ | ||
- | |||
- | < | ||
- | [1, 2, 3, ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | lista[3] | ||
- | </ | ||
- | |||
- | < | ||
- | ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | #krotki (tuple) | ||
- | |||
- | zm=tuple(lista) | ||
- | print(zm, | ||
- | zm. | ||
- | </ | ||
- | |||
- | < | ||
- | (1, 2, 3, ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | print(zm) | ||
- | zm[4].append(' | ||
- | print(zm) | ||
- | </ | ||
- | |||
- | < | ||
- | (1, 2, 3, ' | ||
- | (1, 2, 3, ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm[2]=5 | ||
- | </ | ||
- | |||
- | < | ||
- | --------------------------------------------------------------------------- | ||
- | |||
- | TypeError | ||
- | |||
- | Cell In[20], line 1 | ||
- | ----> 1 zm[2]=5 | ||
- | |||
- | |||
- | TypeError: ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | # typ słownikowy | ||
- | |||
- | zm=dict() | ||
- | print(zm, | ||
- | </ | ||
- | |||
- | < | ||
- | {} <class ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm[' | ||
- | |||
- | zm[(1, | ||
- | |||
- | print(zm) | ||
- | </ | ||
- | |||
- | < | ||
- | {' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm[' | ||
- | print(zm) | ||
- | </ | ||
- | |||
- | < | ||
- | {' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm[(1,2)] | ||
- | </ | ||
- | |||
- | < | ||
- | 'Nie wiem co to jest' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm[1] | ||
- | </ | ||
- | |||
- | < | ||
- | --------------------------------------------------------------------------- | ||
- | |||
- | KeyError | ||
- | |||
- | Cell In[26], line 1 | ||
- | ----> 1 zm[1] | ||
- | |||
- | |||
- | KeyError: 1 | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm=" | ||
- | |||
- | for nr,słowo in enumerate(zm.split(' | ||
- | print(nr, | ||
- | print(" | ||
- | print(" | ||
- | </ | ||
- | |||
- | < | ||
- | 0 Witam | ||
- | ======== | ||
- | 1 wszystkich | ||
- | ======== | ||
- | 2 uczestników | ||
- | ======== | ||
- | 3 kursu | ||
- | ======== | ||
- | Koniec roboty | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm1, | ||
- | |||
- | print(zm1, | ||
- | print(zm2, | ||
- | </ | ||
- | |||
- | < | ||
- | 315 <class ' | ||
- | False <class ' | ||
- | </ | ||
- | |||
- | <code python> | ||
- | zm=45*7, | ||
- | print(zm) | ||
- | </ | ||
- | |||
- | < | ||
- | (315, False) | ||
- | </ | ||
- | |||
- | <code python> | ||
- | import matplotlib.pyplot as plt | ||
- | import numpy as np | ||
- | |||
- | x=np.arange(-20, | ||
- | y=np.sin(x) | ||
- | plt.plot(x, | ||
- | plt.grid() | ||
- | plt.show() | ||
- | </ | ||
- | |||
- | {{output_23_0.png|png}} | ||
- | png | ||
- | |||
- | |||
- | <code python> | ||
- | |||
- | </ | ||
- | |||
- | ======= Spotkanie 2 ======= | ||
====== Wprowadzenie do przetwarzania danych z pakietami numpy i pandas ====== | ====== Wprowadzenie do przetwarzania danych z pakietami numpy i pandas ====== | ||
Linia 1903: | Linia 1587: | ||
{{output_0_1.png|png}} | {{output_0_1.png|png}} | ||
+ | png | ||
+ | |||
+ | |||
+ | <code python> | ||
+ | |||
+ | </ | ||
+ | |||
+ | ======= Spotkanie 8 ======= | ||
+ | |||
+ | <code python> | ||
+ | import numpy as np | ||
+ | import matplotlib.pyplot as plt | ||
+ | |||
+ | from keras.layers import Dense, Flatten, | ||
+ | from keras.models import Sequential | ||
+ | from keras.utils import to_categorical | ||
+ | from keras.datasets import mnist | ||
+ | |||
+ | (X_train, y_train), (X_test, y_test) = mnist.load_data() | ||
+ | </ | ||
+ | |||
+ | |||
+ | <code python> | ||
+ | obraz, obszary = plt.subplots(ncols=5, | ||
+ | sharey=True, | ||
+ | |||
+ | for i in range(5): | ||
+ | obszary[i].set_title(y_train[i]) | ||
+ | obszary[i].imshow(X_train[i], | ||
+ | obszary[i].get_xaxis().set_visible(False) | ||
+ | obszary[i].get_yaxis().set_visible(False) | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | X_train.shape | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | (60000, 28, 28) | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | temp = [] | ||
+ | for i in range(len(y_train)): | ||
+ | temp.append(to_categorical(y_train[i], | ||
+ | |||
+ | y_train = np.array(temp) | ||
+ | |||
+ | temp = [] | ||
+ | for i in range(len(y_test)): | ||
+ | temp.append(to_categorical(y_test[i], | ||
+ | |||
+ | y_test = np.array(temp) | ||
+ | y_test | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | array([[0., 0., 0., ..., 1., 0., 0.], | ||
+ | [0., 0., 1., ..., 0., 0., 0.], | ||
+ | [0., 1., 0., ..., 0., 0., 0.], | ||
+ | ..., | ||
+ | [0., 0., 0., ..., 0., 0., 0.], | ||
+ | [0., 0., 0., ..., 0., 0., 0.], | ||
+ | [0., 0., 0., ..., 0., 0., 0.]]) | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | model=Sequential() | ||
+ | model.add(Flatten(input_shape=(28, | ||
+ | model.add(Dense(30, | ||
+ | model.add(Dense(10, | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | C: | ||
+ | super().__init__(**kwargs) | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | model.summary() | ||
+ | </ | ||
+ | |||
+ | |||
+ | <code python> | ||
+ | model.compile(loss=' | ||
+ | | ||
+ | | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | model.fit(X_train, | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | Epoch 1/30 | ||
+ | [1m1875/ | ||
+ | Epoch 2/30 | ||
+ | [1m1875/ | ||
+ | Epoch 3/30 | ||
+ | [1m1875/ | ||
+ | Epoch 4/30 | ||
+ | [1m1875/ | ||
+ | Epoch 5/30 | ||
+ | [1m1875/ | ||
+ | Epoch 6/30 | ||
+ | [1m1875/ | ||
+ | Epoch 7/30 | ||
+ | [1m1875/ | ||
+ | Epoch 8/30 | ||
+ | [1m1875/ | ||
+ | Epoch 9/30 | ||
+ | [1m1875/ | ||
+ | Epoch 10/30 | ||
+ | [1m1875/ | ||
+ | Epoch 11/30 | ||
+ | [1m1875/ | ||
+ | Epoch 12/30 | ||
+ | [1m1875/ | ||
+ | Epoch 13/30 | ||
+ | [1m1875/ | ||
+ | Epoch 14/30 | ||
+ | [1m1875/ | ||
+ | Epoch 15/30 | ||
+ | [1m1875/ | ||
+ | Epoch 16/30 | ||
+ | [1m1875/ | ||
+ | Epoch 17/30 | ||
+ | [1m1875/ | ||
+ | Epoch 18/30 | ||
+ | [1m1875/ | ||
+ | Epoch 19/30 | ||
+ | [1m1875/ | ||
+ | Epoch 20/30 | ||
+ | [1m1875/ | ||
+ | Epoch 21/30 | ||
+ | [1m1875/ | ||
+ | Epoch 22/30 | ||
+ | [1m1875/ | ||
+ | Epoch 23/30 | ||
+ | [1m1875/ | ||
+ | Epoch 24/30 | ||
+ | [1m1875/ | ||
+ | Epoch 25/30 | ||
+ | [1m1875/ | ||
+ | Epoch 26/30 | ||
+ | [1m1875/ | ||
+ | Epoch 27/30 | ||
+ | [1m1875/ | ||
+ | Epoch 28/30 | ||
+ | [1m1875/ | ||
+ | Epoch 29/30 | ||
+ | [1m1875/ | ||
+ | Epoch 30/30 | ||
+ | [1m1875/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | < | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | predictions = model.predict(X_test) | ||
+ | predictions = np.argmax(predictions, | ||
+ | predictions | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | [1m313/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | array([7, 2, 1, ..., 4, 5, 6]) | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | obraz, obszary = plt.subplots(ncols=10, | ||
+ | | ||
+ | for i in range(40): | ||
+ | obraz.axes[i].set_title(predictions[i]) | ||
+ | obraz.axes[i].imshow(X_test[i], | ||
+ | obraz.axes[i].get_xaxis().set_visible(False) | ||
+ | obraz.axes[i].get_yaxis().set_visible(False) | ||
+ | plt.show() | ||
+ | </ | ||
+ | |||
+ | {{output_9_0.png|png}} | ||
+ | png | ||
+ | |||
+ | |||
+ | <code python> | ||
+ | model = Sequential([ | ||
+ | |||
+ | Conv2D(64, (3, 3), activation=' | ||
+ | MaxPooling2D(pool_size=(2, | ||
+ | Dropout(0.35), | ||
+ | Flatten(), | ||
+ | Dense(128, activation=' | ||
+ | Dropout(0.3), | ||
+ | Dense(10, activation=' | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | C: | ||
+ | super().__init__(activity_regularizer=activity_regularizer, | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | model.summary() | ||
+ | </ | ||
+ | |||
+ | |||
+ | <code python> | ||
+ | model.compile(loss=' | ||
+ | | ||
+ | | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | model.fit(X_train, | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | Epoch 1/30 | ||
+ | [1m1875/ | ||
+ | Epoch 2/30 | ||
+ | [1m1875/ | ||
+ | Epoch 3/30 | ||
+ | [1m1875/ | ||
+ | Epoch 4/30 | ||
+ | [1m1875/ | ||
+ | Epoch 5/30 | ||
+ | [1m1875/ | ||
+ | Epoch 6/30 | ||
+ | [1m1875/ | ||
+ | Epoch 7/30 | ||
+ | [1m1875/ | ||
+ | Epoch 8/30 | ||
+ | [1m1875/ | ||
+ | Epoch 9/30 | ||
+ | [1m1875/ | ||
+ | Epoch 10/30 | ||
+ | [1m1875/ | ||
+ | Epoch 11/30 | ||
+ | [1m1875/ | ||
+ | Epoch 12/30 | ||
+ | [1m1875/ | ||
+ | Epoch 13/30 | ||
+ | [1m1875/ | ||
+ | Epoch 14/30 | ||
+ | [1m1875/ | ||
+ | Epoch 15/30 | ||
+ | [1m1875/ | ||
+ | Epoch 16/30 | ||
+ | [1m1875/ | ||
+ | Epoch 17/30 | ||
+ | [1m1875/ | ||
+ | Epoch 18/30 | ||
+ | [1m1875/ | ||
+ | Epoch 19/30 | ||
+ | [1m1875/ | ||
+ | Epoch 20/30 | ||
+ | [1m1875/ | ||
+ | Epoch 21/30 | ||
+ | [1m1875/ | ||
+ | Epoch 22/30 | ||
+ | [1m1875/ | ||
+ | Epoch 23/30 | ||
+ | [1m1875/ | ||
+ | Epoch 24/30 | ||
+ | [1m1875/ | ||
+ | Epoch 25/30 | ||
+ | [1m1875/ | ||
+ | Epoch 26/30 | ||
+ | [1m1875/ | ||
+ | Epoch 27/30 | ||
+ | [1m1875/ | ||
+ | Epoch 28/30 | ||
+ | [1m1875/ | ||
+ | Epoch 29/30 | ||
+ | [1m1875/ | ||
+ | Epoch 30/30 | ||
+ | [1m1875/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | < | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | predictions = model.predict(X_test) | ||
+ | predictions = np.argmax(predictions, | ||
+ | predictions | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | [1m313/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | array([7, 2, 1, ..., 4, 5, 6]) | ||
+ | </ | ||
+ | |||
+ | <code python> | ||
+ | obraz, obszary = plt.subplots(ncols=10, | ||
+ | | ||
+ | for i in range(40): | ||
+ | obraz.axes[i].set_title(predictions[i]) | ||
+ | obraz.axes[i].imshow(X_test[i], | ||
+ | obraz.axes[i].get_xaxis().set_visible(False) | ||
+ | obraz.axes[i].get_yaxis().set_visible(False) | ||
+ | plt.show() | ||
+ | </ | ||
+ | |||
+ | {{output_15_0.png|png}} | ||
png | png | ||